Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
2 | | liminfreuzlem.1 |
. . . . 5
⊢
Ⅎ𝑗𝐹 |
3 | | liminfreuzlem.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | liminfreuzlem.3 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | | liminfreuzlem.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
6 | 1, 2, 3, 4, 5 | liminfvaluz4 43299 |
. . . 4
⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗)))) |
7 | 6 | eleq1d 2823 |
. . 3
⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔
-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ)) |
8 | 4 | fvexi 6781 |
. . . . . . 7
⊢ 𝑍 ∈ V |
9 | 8 | mptex 7092 |
. . . . . 6
⊢ (𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗)) ∈ V |
10 | | limsupcl 15170 |
. . . . . 6
⊢ ((𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗)) ∈ V → (lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈
ℝ*) |
11 | 9, 10 | ax-mp 5 |
. . . . 5
⊢ (lim
sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈
ℝ* |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈
ℝ*) |
13 | 12 | xnegred 42969 |
. . 3
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ ↔
-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ)) |
14 | 7, 13 | bitr4d 281 |
. 2
⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (lim
sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ)) |
15 | 5 | ffvelrnda 6954 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
16 | 15 | renegcld 11390 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → -(𝐹‘𝑗) ∈ ℝ) |
17 | 1, 3, 4, 16 | limsupreuzmpt 43239 |
. . 3
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦))) |
18 | | renegcl 11272 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
19 | 18 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) → -𝑦 ∈ ℝ) |
20 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑦 ∈ ℝ) |
21 | 5 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝐹:𝑍⟶ℝ) |
22 | 4 | uztrn2 12589 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
23 | 22 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
24 | 21, 23 | ffvelrnd 6955 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ ℝ) |
25 | 24 | adantllr 716 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ ℝ) |
26 | 20, 25 | leneg2d 42947 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝑦 ≤ -(𝐹‘𝑗) ↔ (𝐹‘𝑗) ≤ -𝑦)) |
27 | 26 | rexbidva 3223 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
28 | 27 | ralbidva 3107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
29 | 28 | biimpd 228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
30 | 29 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦) |
31 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑦 → ((𝐹‘𝑗) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ -𝑦)) |
32 | 31 | rexbidv 3224 |
. . . . . . . . 9
⊢ (𝑥 = -𝑦 → (∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
33 | 32 | ralbidv 3108 |
. . . . . . . 8
⊢ (𝑥 = -𝑦 → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
34 | 33 | rspcev 3560 |
. . . . . . 7
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
35 | 19, 30, 34 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
36 | 35 | rexlimdva2 3214 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
37 | | renegcl 11272 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
38 | 37 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → -𝑥 ∈ ℝ) |
39 | 24 | adantllr 716 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ ℝ) |
40 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑥 ∈ ℝ) |
41 | 39, 40 | lenegd 11542 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑗) ≤ 𝑥 ↔ -𝑥 ≤ -(𝐹‘𝑗))) |
42 | 41 | rexbidva 3223 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
43 | 42 | ralbidva 3107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
44 | 43 | biimpd 228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
45 | 44 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗)) |
46 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑥 → (𝑦 ≤ -(𝐹‘𝑗) ↔ -𝑥 ≤ -(𝐹‘𝑗))) |
47 | 46 | rexbidv 3224 |
. . . . . . . . 9
⊢ (𝑦 = -𝑥 → (∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
48 | 47 | ralbidv 3108 |
. . . . . . . 8
⊢ (𝑦 = -𝑥 → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
49 | 48 | rspcev 3560 |
. . . . . . 7
⊢ ((-𝑥 ∈ ℝ ∧
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) |
50 | 38, 45, 49 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) |
51 | 50 | rexlimdva2 3214 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗))) |
52 | 36, 51 | impbid 211 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
53 | 18 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) → -𝑦 ∈ ℝ) |
54 | 15 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
55 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝑦 ∈ ℝ) |
56 | 54, 55 | leneg3d 42956 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (-(𝐹‘𝑗) ≤ 𝑦 ↔ -𝑦 ≤ (𝐹‘𝑗))) |
57 | 56 | ralbidva 3107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗))) |
58 | 57 | biimpd 228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 → ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗))) |
59 | 58 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) → ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗)) |
60 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑥 = -𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ -𝑦 ≤ (𝐹‘𝑗))) |
61 | 60 | ralbidv 3108 |
. . . . . . . 8
⊢ (𝑥 = -𝑦 → (∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗))) |
62 | 61 | rspcev 3560 |
. . . . . . 7
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
63 | 53, 59, 62 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
64 | 63 | rexlimdva2 3214 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
65 | 37 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) → -𝑥 ∈ ℝ) |
66 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝑥 ∈ ℝ) |
67 | 15 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
68 | 66, 67 | lenegd 11542 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝑥 ≤ (𝐹‘𝑗) ↔ -(𝐹‘𝑗) ≤ -𝑥)) |
69 | 68 | ralbidva 3107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥)) |
70 | 69 | biimpd 228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) → ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥)) |
71 | 70 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥) |
72 | | brralrspcev 5134 |
. . . . . . 7
⊢ ((-𝑥 ∈ ℝ ∧
∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) |
73 | 65, 71, 72 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) |
74 | 73 | rexlimdva2 3214 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦)) |
75 | 64, 74 | impbid 211 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
76 | 52, 75 | anbi12d 631 |
. . 3
⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
77 | 17, 76 | bitrd 278 |
. 2
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
78 | 14, 77 | bitrd 278 |
1
⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |