Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfreuzlem Structured version   Visualization version   GIF version

Theorem liminfreuzlem 45899
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfreuzlem.1 𝑗𝐹
liminfreuzlem.2 (𝜑𝑀 ∈ ℤ)
liminfreuzlem.3 𝑍 = (ℤ𝑀)
liminfreuzlem.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
liminfreuzlem (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem liminfreuzlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑗𝜑
2 liminfreuzlem.1 . . . . 5 𝑗𝐹
3 liminfreuzlem.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfreuzlem.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfreuzlem.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
61, 2, 3, 4, 5liminfvaluz4 45896 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))))
76eleq1d 2816 . . 3 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
84fvexi 6836 . . . . . . 7 𝑍 ∈ V
98mptex 7157 . . . . . 6 (𝑗𝑍 ↦ -(𝐹𝑗)) ∈ V
10 limsupcl 15380 . . . . . 6 ((𝑗𝑍 ↦ -(𝐹𝑗)) ∈ V → (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*)
119, 10ax-mp 5 . . . . 5 (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*
1211a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*)
1312xnegred 45567 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
147, 13bitr4d 282 . 2 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
155ffvelcdmda 7017 . . . . 5 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
1615renegcld 11544 . . . 4 ((𝜑𝑗𝑍) → -(𝐹𝑗) ∈ ℝ)
171, 3, 4, 16limsupreuzmpt 45836 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)))
18 renegcl 11424 . . . . . . . 8 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1918ad2antlr 727 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → -𝑦 ∈ ℝ)
20 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑦 ∈ ℝ)
215ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐹:𝑍⟶ℝ)
224uztrn2 12751 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2322adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2421, 23ffvelcdmd 7018 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
2524adantllr 719 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
2620, 25leneg2d 45545 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑦 ≤ -(𝐹𝑗) ↔ (𝐹𝑗) ≤ -𝑦))
2726rexbidva 3154 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) → (∃𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
2827ralbidva 3153 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
2928biimpd 229 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3029imp 406 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦)
31 breq2 5093 . . . . . . . . . 10 (𝑥 = -𝑦 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ -𝑦))
3231rexbidv 3156 . . . . . . . . 9 (𝑥 = -𝑦 → (∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3332ralbidv 3155 . . . . . . . 8 (𝑥 = -𝑦 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3433rspcev 3572 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3519, 30, 34syl2anc 584 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635rexlimdva2 3135 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
37 renegcl 11424 . . . . . . . 8 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
3837ad2antlr 727 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → -𝑥 ∈ ℝ)
3924adantllr 719 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
40 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
4139, 40lenegd 11696 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑗) ≤ 𝑥 ↔ -𝑥 ≤ -(𝐹𝑗)))
4241rexbidva 3154 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4342ralbidva 3153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4443biimpd 229 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4544imp 406 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗))
46 breq1 5092 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝑦 ≤ -(𝐹𝑗) ↔ -𝑥 ≤ -(𝐹𝑗)))
4746rexbidv 3156 . . . . . . . . 9 (𝑦 = -𝑥 → (∃𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4847ralbidv 3155 . . . . . . . 8 (𝑦 = -𝑥 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4948rspcev 3572 . . . . . . 7 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗))
5038, 45, 49syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗))
5150rexlimdva2 3135 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)))
5236, 51impbid 212 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
5318ad2antlr 727 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → -𝑦 ∈ ℝ)
5415adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
55 simplr 768 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → 𝑦 ∈ ℝ)
5654, 55leneg3d 45554 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (-(𝐹𝑗) ≤ 𝑦 ↔ -𝑦 ≤ (𝐹𝑗)))
5756ralbidva 3153 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
5857biimpd 229 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 → ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
5958imp 406 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗))
60 breq1 5092 . . . . . . . . 9 (𝑥 = -𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ -𝑦 ≤ (𝐹𝑗)))
6160ralbidv 3155 . . . . . . . 8 (𝑥 = -𝑦 → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) ↔ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
6261rspcev 3572 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
6353, 59, 62syl2anc 584 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
6463rexlimdva2 3135 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
6537ad2antlr 727 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → -𝑥 ∈ ℝ)
66 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
6715adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
6866, 67lenegd 11696 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 ≤ (𝐹𝑗) ↔ -(𝐹𝑗) ≤ -𝑥))
6968ralbidva 3153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) ↔ ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥))
7069biimpd 229 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) → ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥))
7170imp 406 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥)
72 brralrspcev 5149 . . . . . . 7 ((-𝑥 ∈ ℝ ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)
7365, 71, 72syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)
7473rexlimdva2 3135 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦))
7564, 74impbid 212 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
7652, 75anbi12d 632 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
7717, 76bitrd 279 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
7814, 77bitrd 279 1 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  cr 11005  *cxr 11145  cle 11147  -cneg 11345  cz 12468  cuz 12732  -𝑒cxne 13008  lim supclsp 15377  lim infclsi 45848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-xneg 13011  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-ceil 13697  df-limsup 15378  df-liminf 45849
This theorem is referenced by:  liminfreuz  45900
  Copyright terms: Public domain W3C validator