Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfreuzlem Structured version   Visualization version   GIF version

Theorem liminfreuzlem 45328
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfreuzlem.1 𝑗𝐹
liminfreuzlem.2 (𝜑𝑀 ∈ ℤ)
liminfreuzlem.3 𝑍 = (ℤ𝑀)
liminfreuzlem.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
liminfreuzlem (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem liminfreuzlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . . 5 𝑗𝜑
2 liminfreuzlem.1 . . . . 5 𝑗𝐹
3 liminfreuzlem.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfreuzlem.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfreuzlem.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
61, 2, 3, 4, 5liminfvaluz4 45325 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))))
76eleq1d 2810 . . 3 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
84fvexi 6910 . . . . . . 7 𝑍 ∈ V
98mptex 7235 . . . . . 6 (𝑗𝑍 ↦ -(𝐹𝑗)) ∈ V
10 limsupcl 15453 . . . . . 6 ((𝑗𝑍 ↦ -(𝐹𝑗)) ∈ V → (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*)
119, 10ax-mp 5 . . . . 5 (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*
1211a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*)
1312xnegred 44990 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
147, 13bitr4d 281 . 2 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
155ffvelcdmda 7093 . . . . 5 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
1615renegcld 11673 . . . 4 ((𝜑𝑗𝑍) → -(𝐹𝑗) ∈ ℝ)
171, 3, 4, 16limsupreuzmpt 45265 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)))
18 renegcl 11555 . . . . . . . 8 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1918ad2antlr 725 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → -𝑦 ∈ ℝ)
20 simpllr 774 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑦 ∈ ℝ)
215ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐹:𝑍⟶ℝ)
224uztrn2 12874 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2322adantll 712 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2421, 23ffvelcdmd 7094 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
2524adantllr 717 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
2620, 25leneg2d 44968 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑦 ≤ -(𝐹𝑗) ↔ (𝐹𝑗) ≤ -𝑦))
2726rexbidva 3166 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) → (∃𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
2827ralbidva 3165 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
2928biimpd 228 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3029imp 405 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦)
31 breq2 5153 . . . . . . . . . 10 (𝑥 = -𝑦 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ -𝑦))
3231rexbidv 3168 . . . . . . . . 9 (𝑥 = -𝑦 → (∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3332ralbidv 3167 . . . . . . . 8 (𝑥 = -𝑦 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3433rspcev 3606 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3519, 30, 34syl2anc 582 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635rexlimdva2 3146 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
37 renegcl 11555 . . . . . . . 8 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
3837ad2antlr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → -𝑥 ∈ ℝ)
3924adantllr 717 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
40 simpllr 774 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
4139, 40lenegd 11825 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑗) ≤ 𝑥 ↔ -𝑥 ≤ -(𝐹𝑗)))
4241rexbidva 3166 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4342ralbidva 3165 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4443biimpd 228 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4544imp 405 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗))
46 breq1 5152 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝑦 ≤ -(𝐹𝑗) ↔ -𝑥 ≤ -(𝐹𝑗)))
4746rexbidv 3168 . . . . . . . . 9 (𝑦 = -𝑥 → (∃𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4847ralbidv 3167 . . . . . . . 8 (𝑦 = -𝑥 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4948rspcev 3606 . . . . . . 7 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗))
5038, 45, 49syl2anc 582 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗))
5150rexlimdva2 3146 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)))
5236, 51impbid 211 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
5318ad2antlr 725 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → -𝑦 ∈ ℝ)
5415adantlr 713 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
55 simplr 767 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → 𝑦 ∈ ℝ)
5654, 55leneg3d 44977 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (-(𝐹𝑗) ≤ 𝑦 ↔ -𝑦 ≤ (𝐹𝑗)))
5756ralbidva 3165 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
5857biimpd 228 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 → ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
5958imp 405 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗))
60 breq1 5152 . . . . . . . . 9 (𝑥 = -𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ -𝑦 ≤ (𝐹𝑗)))
6160ralbidv 3167 . . . . . . . 8 (𝑥 = -𝑦 → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) ↔ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
6261rspcev 3606 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
6353, 59, 62syl2anc 582 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
6463rexlimdva2 3146 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
6537ad2antlr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → -𝑥 ∈ ℝ)
66 simplr 767 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
6715adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
6866, 67lenegd 11825 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 ≤ (𝐹𝑗) ↔ -(𝐹𝑗) ≤ -𝑥))
6968ralbidva 3165 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) ↔ ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥))
7069biimpd 228 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) → ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥))
7170imp 405 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥)
72 brralrspcev 5209 . . . . . . 7 ((-𝑥 ∈ ℝ ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)
7365, 71, 72syl2anc 582 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)
7473rexlimdva2 3146 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦))
7564, 74impbid 211 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
7652, 75anbi12d 630 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
7717, 76bitrd 278 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
7814, 77bitrd 278 1 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wnfc 2875  wral 3050  wrex 3059  Vcvv 3461   class class class wbr 5149  cmpt 5232  wf 6545  cfv 6549  cr 11139  *cxr 11279  cle 11281  -cneg 11477  cz 12591  cuz 12855  -𝑒cxne 13124  lim supclsp 15450  lim infclsi 45277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-xneg 13127  df-ico 13365  df-fz 13520  df-fzo 13663  df-fl 13793  df-ceil 13794  df-limsup 15451  df-liminf 45278
This theorem is referenced by:  liminfreuz  45329
  Copyright terms: Public domain W3C validator