Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfreuzlem Structured version   Visualization version   GIF version

Theorem liminfreuzlem 43343
Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfreuzlem.1 𝑗𝐹
liminfreuzlem.2 (𝜑𝑀 ∈ ℤ)
liminfreuzlem.3 𝑍 = (ℤ𝑀)
liminfreuzlem.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
liminfreuzlem (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem liminfreuzlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . 5 𝑗𝜑
2 liminfreuzlem.1 . . . . 5 𝑗𝐹
3 liminfreuzlem.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfreuzlem.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfreuzlem.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
61, 2, 3, 4, 5liminfvaluz4 43340 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))))
76eleq1d 2823 . . 3 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
84fvexi 6788 . . . . . . 7 𝑍 ∈ V
98mptex 7099 . . . . . 6 (𝑗𝑍 ↦ -(𝐹𝑗)) ∈ V
10 limsupcl 15182 . . . . . 6 ((𝑗𝑍 ↦ -(𝐹𝑗)) ∈ V → (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*)
119, 10ax-mp 5 . . . . 5 (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*
1211a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ*)
1312xnegred 43010 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
147, 13bitr4d 281 . 2 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ))
155ffvelrnda 6961 . . . . 5 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
1615renegcld 11402 . . . 4 ((𝜑𝑗𝑍) → -(𝐹𝑗) ∈ ℝ)
171, 3, 4, 16limsupreuzmpt 43280 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)))
18 renegcl 11284 . . . . . . . 8 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1918ad2antlr 724 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → -𝑦 ∈ ℝ)
20 simpllr 773 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑦 ∈ ℝ)
215ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝐹:𝑍⟶ℝ)
224uztrn2 12601 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2322adantll 711 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2421, 23ffvelrnd 6962 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
2524adantllr 716 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
2620, 25leneg2d 42988 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝑦 ≤ -(𝐹𝑗) ↔ (𝐹𝑗) ≤ -𝑦))
2726rexbidva 3225 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑘𝑍) → (∃𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
2827ralbidva 3111 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
2928biimpd 228 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3029imp 407 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦)
31 breq2 5078 . . . . . . . . . 10 (𝑥 = -𝑦 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ -𝑦))
3231rexbidv 3226 . . . . . . . . 9 (𝑥 = -𝑦 → (∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3332ralbidv 3112 . . . . . . . 8 (𝑥 = -𝑦 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦))
3433rspcev 3561 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ -𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3519, 30, 34syl2anc 584 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
3635rexlimdva2 3216 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
37 renegcl 11284 . . . . . . . 8 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
3837ad2antlr 724 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → -𝑥 ∈ ℝ)
3924adantllr 716 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ ℝ)
40 simpllr 773 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑥 ∈ ℝ)
4139, 40lenegd 11554 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → ((𝐹𝑗) ≤ 𝑥 ↔ -𝑥 ≤ -(𝐹𝑗)))
4241rexbidva 3225 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (∃𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4342ralbidva 3111 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4443biimpd 228 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4544imp 407 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗))
46 breq1 5077 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝑦 ≤ -(𝐹𝑗) ↔ -𝑥 ≤ -(𝐹𝑗)))
4746rexbidv 3226 . . . . . . . . 9 (𝑦 = -𝑥 → (∃𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4847ralbidv 3112 . . . . . . . 8 (𝑦 = -𝑥 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)))
4948rspcev 3561 . . . . . . 7 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑥 ≤ -(𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗))
5038, 45, 49syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗))
5150rexlimdva2 3216 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗)))
5236, 51impbid 211 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
5318ad2antlr 724 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → -𝑦 ∈ ℝ)
5415adantlr 712 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
55 simplr 766 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → 𝑦 ∈ ℝ)
5654, 55leneg3d 42997 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (-(𝐹𝑗) ≤ 𝑦 ↔ -𝑦 ≤ (𝐹𝑗)))
5756ralbidva 3111 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
5857biimpd 228 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 → ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
5958imp 407 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗))
60 breq1 5077 . . . . . . . . 9 (𝑥 = -𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ -𝑦 ≤ (𝐹𝑗)))
6160ralbidv 3112 . . . . . . . 8 (𝑥 = -𝑦 → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) ↔ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)))
6261rspcev 3561 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ ∀𝑗𝑍 -𝑦 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
6353, 59, 62syl2anc 584 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))
6463rexlimdva2 3216 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
6537ad2antlr 724 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → -𝑥 ∈ ℝ)
66 simplr 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
6715adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
6866, 67lenegd 11554 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 ≤ (𝐹𝑗) ↔ -(𝐹𝑗) ≤ -𝑥))
6968ralbidva 3111 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) ↔ ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥))
7069biimpd 228 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) → ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥))
7170imp 407 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥)
72 brralrspcev 5134 . . . . . . 7 ((-𝑥 ∈ ℝ ∧ ∀𝑗𝑍 -(𝐹𝑗) ≤ -𝑥) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)
7365, 71, 72syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦)
7473rexlimdva2 3216 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦))
7564, 74impbid 211 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗)))
7652, 75anbi12d 631 . . 3 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑦 ≤ -(𝐹𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 -(𝐹𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
7717, 76bitrd 278 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -(𝐹𝑗))) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
7814, 77bitrd 278 1 (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065  Vcvv 3432   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  cr 10870  *cxr 11008  cle 11010  -cneg 11206  cz 12319  cuz 12582  -𝑒cxne 12845  lim supclsp 15179  lim infclsi 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-xneg 12848  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-limsup 15180  df-liminf 43293
This theorem is referenced by:  liminfreuz  43344
  Copyright terms: Public domain W3C validator