| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 2 | | liminfreuzlem.1 |
. . . . 5
⊢
Ⅎ𝑗𝐹 |
| 3 | | liminfreuzlem.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | | liminfreuzlem.3 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | | liminfreuzlem.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| 6 | 1, 2, 3, 4, 5 | liminfvaluz4 45814 |
. . . 4
⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗)))) |
| 7 | 6 | eleq1d 2826 |
. . 3
⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔
-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ)) |
| 8 | 4 | fvexi 6920 |
. . . . . . 7
⊢ 𝑍 ∈ V |
| 9 | 8 | mptex 7243 |
. . . . . 6
⊢ (𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗)) ∈ V |
| 10 | | limsupcl 15509 |
. . . . . 6
⊢ ((𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗)) ∈ V → (lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈
ℝ*) |
| 11 | 9, 10 | ax-mp 5 |
. . . . 5
⊢ (lim
sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈
ℝ* |
| 12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈
ℝ*) |
| 13 | 12 | xnegred 45481 |
. . 3
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ ↔
-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ)) |
| 14 | 7, 13 | bitr4d 282 |
. 2
⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (lim
sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ)) |
| 15 | 5 | ffvelcdmda 7104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
| 16 | 15 | renegcld 11690 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → -(𝐹‘𝑗) ∈ ℝ) |
| 17 | 1, 3, 4, 16 | limsupreuzmpt 45754 |
. . 3
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦))) |
| 18 | | renegcl 11572 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
| 19 | 18 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) → -𝑦 ∈ ℝ) |
| 20 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑦 ∈ ℝ) |
| 21 | 5 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝐹:𝑍⟶ℝ) |
| 22 | 4 | uztrn2 12897 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
| 23 | 22 | adantll 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
| 24 | 21, 23 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ ℝ) |
| 25 | 24 | adantllr 719 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ ℝ) |
| 26 | 20, 25 | leneg2d 45459 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝑦 ≤ -(𝐹‘𝑗) ↔ (𝐹‘𝑗) ≤ -𝑦)) |
| 27 | 26 | rexbidva 3177 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
| 28 | 27 | ralbidva 3176 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
| 29 | 28 | biimpd 229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
| 30 | 29 | imp 406 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦) |
| 31 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑦 → ((𝐹‘𝑗) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ -𝑦)) |
| 32 | 31 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑥 = -𝑦 → (∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
| 33 | 32 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑥 = -𝑦 → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦)) |
| 34 | 33 | rspcev 3622 |
. . . . . . 7
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ -𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 35 | 19, 30, 34 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 36 | 35 | rexlimdva2 3157 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 37 | | renegcl 11572 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
| 38 | 37 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → -𝑥 ∈ ℝ) |
| 39 | 24 | adantllr 719 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ ℝ) |
| 40 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑥 ∈ ℝ) |
| 41 | 39, 40 | lenegd 11842 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝐹‘𝑗) ≤ 𝑥 ↔ -𝑥 ≤ -(𝐹‘𝑗))) |
| 42 | 41 | rexbidva 3177 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
| 43 | 42 | ralbidva 3176 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
| 44 | 43 | biimpd 229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
| 45 | 44 | imp 406 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗)) |
| 46 | | breq1 5146 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑥 → (𝑦 ≤ -(𝐹‘𝑗) ↔ -𝑥 ≤ -(𝐹‘𝑗))) |
| 47 | 46 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑦 = -𝑥 → (∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
| 48 | 47 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑦 = -𝑥 → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗))) |
| 49 | 48 | rspcev 3622 |
. . . . . . 7
⊢ ((-𝑥 ∈ ℝ ∧
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)-𝑥 ≤ -(𝐹‘𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) |
| 50 | 38, 45, 49 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗)) |
| 51 | 50 | rexlimdva2 3157 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗))) |
| 52 | 36, 51 | impbid 212 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 53 | 18 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) → -𝑦 ∈ ℝ) |
| 54 | 15 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
| 55 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝑦 ∈ ℝ) |
| 56 | 54, 55 | leneg3d 45468 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (-(𝐹‘𝑗) ≤ 𝑦 ↔ -𝑦 ≤ (𝐹‘𝑗))) |
| 57 | 56 | ralbidva 3176 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗))) |
| 58 | 57 | biimpd 229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 → ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗))) |
| 59 | 58 | imp 406 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) → ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗)) |
| 60 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑥 = -𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ -𝑦 ≤ (𝐹‘𝑗))) |
| 61 | 60 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑥 = -𝑦 → (∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗))) |
| 62 | 61 | rspcev 3622 |
. . . . . . 7
⊢ ((-𝑦 ∈ ℝ ∧
∀𝑗 ∈ 𝑍 -𝑦 ≤ (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 63 | 53, 59, 62 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 64 | 63 | rexlimdva2 3157 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 65 | 37 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) → -𝑥 ∈ ℝ) |
| 66 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝑥 ∈ ℝ) |
| 67 | 15 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℝ) |
| 68 | 66, 67 | lenegd 11842 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝑥 ≤ (𝐹‘𝑗) ↔ -(𝐹‘𝑗) ≤ -𝑥)) |
| 69 | 68 | ralbidva 3176 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥)) |
| 70 | 69 | biimpd 229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) → ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥)) |
| 71 | 70 | imp 406 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥) |
| 72 | | brralrspcev 5203 |
. . . . . . 7
⊢ ((-𝑥 ∈ ℝ ∧
∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ -𝑥) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) |
| 73 | 65, 71, 72 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) |
| 74 | 73 | rexlimdva2 3157 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦)) |
| 75 | 64, 74 | impbid 212 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 76 | 52, 75 | anbi12d 632 |
. . 3
⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑦 ≤ -(𝐹‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 -(𝐹‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| 77 | 17, 76 | bitrd 279 |
. 2
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -(𝐹‘𝑗))) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| 78 | 14, 77 | bitrd 279 |
1
⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |