MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemp Structured version   Visualization version   GIF version

Theorem pntlemp 27102
Description: Lemma for pnt 27106. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r ๐‘… = (๐‘Ž โˆˆ โ„+ โ†ฆ ((ฯˆโ€˜๐‘Ž) โˆ’ ๐‘Ž))
pntlem3.a (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
pntlem3.A (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ)) โ‰ค ๐ด)
pntlemp.b (๐œ‘ โ†’ ๐ต โˆˆ โ„+)
pntlemp.l (๐œ‘ โ†’ ๐ฟ โˆˆ (0(,)1))
pntlemp.d ๐ท = (๐ด + 1)
pntlemp.f ๐น = ((1 โˆ’ (1 / ๐ท)) ยท ((๐ฟ / (32 ยท ๐ต)) / (๐ทโ†‘2)))
pntlemp.K (๐œ‘ โ†’ โˆ€๐‘’ โˆˆ (0(,)1)โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ต / ๐‘’))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’))
pntlemp.u (๐œ‘ โ†’ ๐‘ˆ โˆˆ โ„+)
pntlemp.u2 (๐œ‘ โ†’ ๐‘ˆ โ‰ค ๐ด)
pntlemp.e ๐ธ = (๐‘ˆ / ๐ท)
pntlemp.k ๐พ = (expโ€˜(๐ต / ๐ธ))
pntlemp.y (๐œ‘ โ†’ (๐‘Œ โˆˆ โ„+ โˆง 1 โ‰ค ๐‘Œ))
pntlemp.U (๐œ‘ โ†’ โˆ€๐‘ง โˆˆ (๐‘Œ[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ง) / ๐‘ง)) โ‰ค ๐‘ˆ)
Assertion
Ref Expression
pntlemp (๐œ‘ โ†’ โˆƒ๐‘ค โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (๐‘ค[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค (๐‘ˆ โˆ’ (๐น ยท (๐‘ˆโ†‘3))))
Distinct variable groups:   ๐‘ค,๐‘ฃ,๐‘ฅ,๐‘ฆ,๐‘ง,๐ด   ๐‘’,๐‘Ž,๐‘˜,๐‘ข,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ,๐‘ง,๐ท   ๐‘ฃ,๐น,๐‘ค,๐‘ฆ,๐‘ง   ๐‘’,๐พ,๐‘˜,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ,๐‘ง   ๐‘…,๐‘’,๐‘˜,๐‘ข,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ,๐‘ง   ๐ธ,๐‘Ž,๐‘’,๐‘˜,๐‘ข,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ,๐‘ง   ๐‘Œ,๐‘Ž,๐‘˜,๐‘ฃ,๐‘ค,๐‘ฆ,๐‘ง   ๐‘’,๐ฟ,๐‘˜,๐‘ข,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ,๐‘ง   ๐œ‘,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ   ๐ต,๐‘’,๐‘˜,๐‘ฃ,๐‘ค,๐‘ฅ,๐‘ฆ,๐‘ง   ๐‘ฃ,๐‘ˆ,๐‘ค,๐‘ง
Allowed substitution hints:   ๐œ‘(๐‘ง,๐‘ข,๐‘’,๐‘˜,๐‘Ž)   ๐ด(๐‘ข,๐‘’,๐‘˜,๐‘Ž)   ๐ต(๐‘ข,๐‘Ž)   ๐‘…(๐‘Ž)   ๐‘ˆ(๐‘ฅ,๐‘ฆ,๐‘ข,๐‘’,๐‘˜,๐‘Ž)   ๐น(๐‘ฅ,๐‘ข,๐‘’,๐‘˜,๐‘Ž)   ๐พ(๐‘ข,๐‘Ž)   ๐ฟ(๐‘Ž)   ๐‘Œ(๐‘ฅ,๐‘ข,๐‘’)

Proof of Theorem pntlemp
Dummy variables ๐‘ก ๐‘ ๐‘› are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . . . . 9 (๐‘’ = ๐ธ โ†’ (๐ต / ๐‘’) = (๐ต / ๐ธ))
21fveq2d 6892 . . . . . . . 8 (๐‘’ = ๐ธ โ†’ (expโ€˜(๐ต / ๐‘’)) = (expโ€˜(๐ต / ๐ธ)))
3 pntlemp.k . . . . . . . 8 ๐พ = (expโ€˜(๐ต / ๐ธ))
42, 3eqtr4di 2790 . . . . . . 7 (๐‘’ = ๐ธ โ†’ (expโ€˜(๐ต / ๐‘’)) = ๐พ)
54oveq1d 7420 . . . . . 6 (๐‘’ = ๐ธ โ†’ ((expโ€˜(๐ต / ๐‘’))[,)+โˆž) = (๐พ[,)+โˆž))
6 oveq2 7413 . . . . . . . . . . . . 13 (๐‘’ = ๐ธ โ†’ (๐ฟ ยท ๐‘’) = (๐ฟ ยท ๐ธ))
76oveq2d 7421 . . . . . . . . . . . 12 (๐‘’ = ๐ธ โ†’ (1 + (๐ฟ ยท ๐‘’)) = (1 + (๐ฟ ยท ๐ธ)))
87oveq1d 7420 . . . . . . . . . . 11 (๐‘’ = ๐ธ โ†’ ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) = ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))
98breq1d 5157 . . . . . . . . . 10 (๐‘’ = ๐ธ โ†’ (((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ) โ†” ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)))
109anbi2d 629 . . . . . . . . 9 (๐‘’ = ๐ธ โ†’ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โ†” (๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ))))
118oveq2d 7421 . . . . . . . . . 10 (๐‘’ = ๐ธ โ†’ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง)) = (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง)))
12 breq2 5151 . . . . . . . . . 10 (๐‘’ = ๐ธ โ†’ ((absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’ โ†” (absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
1311, 12raleqbidv 3342 . . . . . . . . 9 (๐‘’ = ๐ธ โ†’ (โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’ โ†” โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
1410, 13anbi12d 631 . . . . . . . 8 (๐‘’ = ๐ธ โ†’ (((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’) โ†” ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
1514rexbidv 3178 . . . . . . 7 (๐‘’ = ๐ธ โ†’ (โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’) โ†” โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
1615ralbidv 3177 . . . . . 6 (๐‘’ = ๐ธ โ†’ (โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’) โ†” โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
175, 16raleqbidv 3342 . . . . 5 (๐‘’ = ๐ธ โ†’ (โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ต / ๐‘’))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’) โ†” โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
1817rexbidv 3178 . . . 4 (๐‘’ = ๐ธ โ†’ (โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ต / ๐‘’))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’) โ†” โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
19 oveq1 7412 . . . . . . 7 (๐‘ฅ = ๐‘ก โ†’ (๐‘ฅ(,)+โˆž) = (๐‘ก(,)+โˆž))
2019raleqdv 3325 . . . . . 6 (๐‘ฅ = ๐‘ก โ†’ (โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†” โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
2120ralbidv 3177 . . . . 5 (๐‘ฅ = ๐‘ก โ†’ (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†” โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
2221cbvrexvw 3235 . . . 4 (โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†” โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
2318, 22bitrdi 286 . . 3 (๐‘’ = ๐ธ โ†’ (โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ต / ๐‘’))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’) โ†” โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
24 pntlemp.K . . 3 (๐œ‘ โ†’ โˆ€๐‘’ โˆˆ (0(,)1)โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ต / ๐‘’))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐‘’)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐‘’))
25 pntlem3.r . . . . . 6 ๐‘… = (๐‘Ž โˆˆ โ„+ โ†ฆ ((ฯˆโ€˜๐‘Ž) โˆ’ ๐‘Ž))
26 pntlem3.a . . . . . 6 (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
27 pntlemp.b . . . . . 6 (๐œ‘ โ†’ ๐ต โˆˆ โ„+)
28 pntlemp.l . . . . . 6 (๐œ‘ โ†’ ๐ฟ โˆˆ (0(,)1))
29 pntlemp.d . . . . . 6 ๐ท = (๐ด + 1)
30 pntlemp.f . . . . . 6 ๐น = ((1 โˆ’ (1 / ๐ท)) ยท ((๐ฟ / (32 ยท ๐ต)) / (๐ทโ†‘2)))
31 pntlemp.u . . . . . 6 (๐œ‘ โ†’ ๐‘ˆ โˆˆ โ„+)
32 pntlemp.u2 . . . . . 6 (๐œ‘ โ†’ ๐‘ˆ โ‰ค ๐ด)
33 pntlemp.e . . . . . 6 ๐ธ = (๐‘ˆ / ๐ท)
3425, 26, 27, 28, 29, 30, 31, 32, 33, 3pntlemc 27087 . . . . 5 (๐œ‘ โ†’ (๐ธ โˆˆ โ„+ โˆง ๐พ โˆˆ โ„+ โˆง (๐ธ โˆˆ (0(,)1) โˆง 1 < ๐พ โˆง (๐‘ˆ โˆ’ ๐ธ) โˆˆ โ„+)))
3534simp3d 1144 . . . 4 (๐œ‘ โ†’ (๐ธ โˆˆ (0(,)1) โˆง 1 < ๐พ โˆง (๐‘ˆ โˆ’ ๐ธ) โˆˆ โ„+))
3635simp1d 1142 . . 3 (๐œ‘ โ†’ ๐ธ โˆˆ (0(,)1))
3723, 24, 36rspcdva 3613 . 2 (๐œ‘ โ†’ โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
38 pntlemp.y . . . . 5 (๐œ‘ โ†’ (๐‘Œ โˆˆ โ„+ โˆง 1 โ‰ค ๐‘Œ))
3938simpld 495 . . . 4 (๐œ‘ โ†’ ๐‘Œ โˆˆ โ„+)
4039rpred 13012 . . 3 (๐œ‘ โ†’ ๐‘Œ โˆˆ โ„)
4138simprd 496 . . 3 (๐œ‘ โ†’ 1 โ‰ค ๐‘Œ)
4225pntrlog2bnd 27076 . . 3 ((๐‘Œ โˆˆ โ„ โˆง 1 โ‰ค ๐‘Œ) โ†’ โˆƒ๐‘ โˆˆ โ„+ โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘)
4340, 41, 42syl2anc 584 . 2 (๐œ‘ โ†’ โˆƒ๐‘ โˆˆ โ„+ โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘)
44 reeanv 3226 . . 3 (โˆƒ๐‘ก โˆˆ โ„+ โˆƒ๐‘ โˆˆ โ„+ (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘) โ†” (โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆƒ๐‘ โˆˆ โ„+ โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))
4526adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ๐ด โˆˆ โ„+)
4627adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ๐ต โˆˆ โ„+)
4728adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ๐ฟ โˆˆ (0(,)1))
4831adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ๐‘ˆ โˆˆ โ„+)
4932adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ๐‘ˆ โ‰ค ๐ด)
5038adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ (๐‘Œ โˆˆ โ„+ โˆง 1 โ‰ค ๐‘Œ))
51 simpl 483 . . . . . . . . 9 ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โ†’ ๐‘ก โˆˆ โ„+)
52 rpaddcl 12992 . . . . . . . . 9 ((๐‘Œ โˆˆ โ„+ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐‘Œ + ๐‘ก) โˆˆ โ„+)
5339, 51, 52syl2an 596 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ (๐‘Œ + ๐‘ก) โˆˆ โ„+)
54 ltaddrp 13007 . . . . . . . . 9 ((๐‘Œ โˆˆ โ„ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐‘Œ < (๐‘Œ + ๐‘ก))
5540, 51, 54syl2an 596 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ๐‘Œ < (๐‘Œ + ๐‘ก))
5653, 55jca 512 . . . . . . 7 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ((๐‘Œ + ๐‘ก) โˆˆ โ„+ โˆง ๐‘Œ < (๐‘Œ + ๐‘ก)))
5756adantrr 715 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ((๐‘Œ + ๐‘ก) โˆˆ โ„+ โˆง ๐‘Œ < (๐‘Œ + ๐‘ก)))
58 simprlr 778 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ๐‘ โˆˆ โ„+)
59 eqid 2732 . . . . . 6 (((๐‘Œ + (4 / (๐ฟ ยท ๐ธ)))โ†‘2) + ((((๐‘Œ + ๐‘ก) ยท (๐พโ†‘2))โ†‘4) + (expโ€˜(((32 ยท ๐ต) / ((๐‘ˆ โˆ’ ๐ธ) ยท (๐ฟ ยท (๐ธโ†‘2)))) ยท ((๐‘ˆ ยท 3) + ๐‘))))) = (((๐‘Œ + (4 / (๐ฟ ยท ๐ธ)))โ†‘2) + ((((๐‘Œ + ๐‘ก) ยท (๐พโ†‘2))โ†‘4) + (expโ€˜(((32 ยท ๐ต) / ((๐‘ˆ โˆ’ ๐ธ) ยท (๐ฟ ยท (๐ธโ†‘2)))) ยท ((๐‘ˆ ยท 3) + ๐‘)))))
60 pntlemp.U . . . . . . 7 (๐œ‘ โ†’ โˆ€๐‘ง โˆˆ (๐‘Œ[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ง) / ๐‘ง)) โ‰ค ๐‘ˆ)
6160adantr 481 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ โˆ€๐‘ง โˆˆ (๐‘Œ[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ง) / ๐‘ง)) โ‰ค ๐‘ˆ)
62 rpxr 12979 . . . . . . . . . 10 (๐‘ก โˆˆ โ„+ โ†’ ๐‘ก โˆˆ โ„*)
6362ad2antrl 726 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ๐‘ก โˆˆ โ„*)
64 rpre 12978 . . . . . . . . . . 11 (๐‘ก โˆˆ โ„+ โ†’ ๐‘ก โˆˆ โ„)
6564ad2antrl 726 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ๐‘ก โˆˆ โ„)
6653rpred 13012 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ (๐‘Œ + ๐‘ก) โˆˆ โ„)
6739adantr 481 . . . . . . . . . . 11 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ๐‘Œ โˆˆ โ„+)
6865, 67ltaddrp2d 13046 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ๐‘ก < (๐‘Œ + ๐‘ก))
6965, 66, 68ltled 11358 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ๐‘ก โ‰ค (๐‘Œ + ๐‘ก))
70 iooss1 13355 . . . . . . . . 9 ((๐‘ก โˆˆ โ„* โˆง ๐‘ก โ‰ค (๐‘Œ + ๐‘ก)) โ†’ ((๐‘Œ + ๐‘ก)(,)+โˆž) โŠ† (๐‘ก(,)+โˆž))
7163, 69, 70syl2anc 584 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ((๐‘Œ + ๐‘ก)(,)+โˆž) โŠ† (๐‘ก(,)+โˆž))
7271adantrr 715 . . . . . . 7 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ ((๐‘Œ + ๐‘ก)(,)+โˆž) โŠ† (๐‘ก(,)+โˆž))
73 simprrl 779 . . . . . . 7 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
74 ssralv 4049 . . . . . . . 8 (((๐‘Œ + ๐‘ก)(,)+โˆž) โŠ† (๐‘ก(,)+โˆž) โ†’ (โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†’ โˆ€๐‘ฆ โˆˆ ((๐‘Œ + ๐‘ก)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
7574ralimdv 3169 . . . . . . 7 (((๐‘Œ + ๐‘ก)(,)+โˆž) โŠ† (๐‘ก(,)+โˆž) โ†’ (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†’ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ ((๐‘Œ + ๐‘ก)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
7672, 73, 75sylc 65 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ ((๐‘Œ + ๐‘ก)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
77 simprrr 780 . . . . . 6 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘)
7825, 45, 46, 47, 29, 30, 48, 49, 33, 3, 50, 57, 58, 59, 61, 76, 77pntleme 27100 . . . . 5 ((๐œ‘ โˆง ((๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+) โˆง (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘))) โ†’ โˆƒ๐‘ค โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (๐‘ค[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค (๐‘ˆ โˆ’ (๐น ยท (๐‘ˆโ†‘3))))
7978expr 457 . . . 4 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง ๐‘ โˆˆ โ„+)) โ†’ ((โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘) โ†’ โˆƒ๐‘ค โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (๐‘ค[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค (๐‘ˆ โˆ’ (๐น ยท (๐‘ˆโ†‘3)))))
8079rexlimdvva 3211 . . 3 (๐œ‘ โ†’ (โˆƒ๐‘ก โˆˆ โ„+ โˆƒ๐‘ โˆˆ โ„+ (โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘) โ†’ โˆƒ๐‘ค โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (๐‘ค[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค (๐‘ˆ โˆ’ (๐น ยท (๐‘ˆโ†‘3)))))
8144, 80biimtrrid 242 . 2 (๐œ‘ โ†’ ((โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘˜ โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ก(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โˆง โˆƒ๐‘ โˆˆ โ„+ โˆ€๐‘ง โˆˆ (1(,)+โˆž)((((absโ€˜(๐‘…โ€˜๐‘ง)) ยท (logโ€˜๐‘ง)) โˆ’ ((2 / (logโ€˜๐‘ง)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜(๐‘ง / ๐‘Œ)))((absโ€˜(๐‘…โ€˜(๐‘ง / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ง) โ‰ค ๐‘) โ†’ โˆƒ๐‘ค โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (๐‘ค[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค (๐‘ˆ โˆ’ (๐น ยท (๐‘ˆโ†‘3)))))
8237, 43, 81mp2and 697 1 (๐œ‘ โ†’ โˆƒ๐‘ค โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (๐‘ค[,)+โˆž)(absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค (๐‘ˆ โˆ’ (๐น ยท (๐‘ˆโ†‘3))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  โˆ€wral 3061  โˆƒwrex 3070   โŠ† wss 3947   class class class wbr 5147   โ†ฆ cmpt 5230  โ€˜cfv 6540  (class class class)co 7405  โ„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ยท cmul 11111  +โˆžcpnf 11241  โ„*cxr 11243   < clt 11244   โ‰ค cle 11245   โˆ’ cmin 11440   / cdiv 11867  2c2 12263  3c3 12264  4c4 12265  cdc 12673  โ„+crp 12970  (,)cioo 13320  [,)cico 13322  [,]cicc 13323  ...cfz 13480  โŒŠcfl 13751  โ†‘cexp 14023  abscabs 15177  ฮฃcsu 15628  expce 16001  logclog 26054  ฯˆcchp 26586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-o1 15430  df-lo1 15431  df-sum 15629  df-ef 16007  df-e 16008  df-sin 16009  df-cos 16010  df-tan 16011  df-pi 16012  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-cmp 22882  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-limc 25374  df-dv 25375  df-ulm 25880  df-log 26056  df-cxp 26057  df-atan 26361  df-em 26486  df-cht 26590  df-vma 26591  df-chp 26592  df-ppi 26593  df-mu 26594
This theorem is referenced by:  pntleml  27103
  Copyright terms: Public domain W3C validator