MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemp Structured version   Visualization version   GIF version

Theorem pntlemp 27521
Description: Lemma for pnt 27525. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
pntlemp.u (𝜑𝑈 ∈ ℝ+)
pntlemp.u2 (𝜑𝑈𝐴)
pntlemp.e 𝐸 = (𝑈 / 𝐷)
pntlemp.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlemp.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlemp.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemp (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐷   𝑣,𝐹,𝑤,𝑦,𝑧   𝑒,𝐾,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑅,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐸,𝑎,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑎,𝑘,𝑣,𝑤,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑣,𝑤,𝑥,𝑦   𝐵,𝑒,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑈,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑥,𝑦,𝑢,𝑒,𝑘,𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑌(𝑥,𝑢,𝑒)

Proof of Theorem pntlemp
Dummy variables 𝑡 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . . . . 9 (𝑒 = 𝐸 → (𝐵 / 𝑒) = (𝐵 / 𝐸))
21fveq2d 6862 . . . . . . . 8 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = (exp‘(𝐵 / 𝐸)))
3 pntlemp.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
42, 3eqtr4di 2782 . . . . . . 7 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = 𝐾)
54oveq1d 7402 . . . . . 6 (𝑒 = 𝐸 → ((exp‘(𝐵 / 𝑒))[,)+∞) = (𝐾[,)+∞))
6 oveq2 7395 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝐿 · 𝑒) = (𝐿 · 𝐸))
76oveq2d 7403 . . . . . . . . . . . 12 (𝑒 = 𝐸 → (1 + (𝐿 · 𝑒)) = (1 + (𝐿 · 𝐸)))
87oveq1d 7402 . . . . . . . . . . 11 (𝑒 = 𝐸 → ((1 + (𝐿 · 𝑒)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑧))
98breq1d 5117 . . . . . . . . . 10 (𝑒 = 𝐸 → (((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)))
109anbi2d 630 . . . . . . . . 9 (𝑒 = 𝐸 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦))))
118oveq2d 7403 . . . . . . . . . 10 (𝑒 = 𝐸 → (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)))
12 breq2 5111 . . . . . . . . . 10 (𝑒 = 𝐸 → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1311, 12raleqbidv 3319 . . . . . . . . 9 (𝑒 = 𝐸 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1410, 13anbi12d 632 . . . . . . . 8 (𝑒 = 𝐸 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3157 . . . . . . 7 (𝑒 = 𝐸 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1615ralbidv 3156 . . . . . 6 (𝑒 = 𝐸 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
175, 16raleqbidv 3319 . . . . 5 (𝑒 = 𝐸 → (∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1817rexbidv 3157 . . . 4 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
19 oveq1 7394 . . . . . . 7 (𝑥 = 𝑡 → (𝑥(,)+∞) = (𝑡(,)+∞))
2019raleqdv 3299 . . . . . 6 (𝑥 = 𝑡 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2120ralbidv 3156 . . . . 5 (𝑥 = 𝑡 → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2221cbvrexvw 3216 . . . 4 (∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2318, 22bitrdi 287 . . 3 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
24 pntlemp.K . . 3 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
25 pntlem3.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
26 pntlem3.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
27 pntlemp.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
28 pntlemp.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
29 pntlemp.d . . . . . 6 𝐷 = (𝐴 + 1)
30 pntlemp.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
31 pntlemp.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
32 pntlemp.u2 . . . . . 6 (𝜑𝑈𝐴)
33 pntlemp.e . . . . . 6 𝐸 = (𝑈 / 𝐷)
3425, 26, 27, 28, 29, 30, 31, 32, 33, 3pntlemc 27506 . . . . 5 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3534simp3d 1144 . . . 4 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3635simp1d 1142 . . 3 (𝜑𝐸 ∈ (0(,)1))
3723, 24, 36rspcdva 3589 . 2 (𝜑 → ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
38 pntlemp.y . . . . 5 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
3938simpld 494 . . . 4 (𝜑𝑌 ∈ ℝ+)
4039rpred 12995 . . 3 (𝜑𝑌 ∈ ℝ)
4138simprd 495 . . 3 (𝜑 → 1 ≤ 𝑌)
4225pntrlog2bnd 27495 . . 3 ((𝑌 ∈ ℝ ∧ 1 ≤ 𝑌) → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
4340, 41, 42syl2anc 584 . 2 (𝜑 → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
44 reeanv 3209 . . 3 (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) ↔ (∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))
4526adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐴 ∈ ℝ+)
4627adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐵 ∈ ℝ+)
4728adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐿 ∈ (0(,)1))
4831adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈 ∈ ℝ+)
4932adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈𝐴)
5038adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
51 simpl 482 . . . . . . . . 9 ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) → 𝑡 ∈ ℝ+)
52 rpaddcl 12975 . . . . . . . . 9 ((𝑌 ∈ ℝ+𝑡 ∈ ℝ+) → (𝑌 + 𝑡) ∈ ℝ+)
5339, 51, 52syl2an 596 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ+)
54 ltaddrp 12990 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ 𝑡 ∈ ℝ+) → 𝑌 < (𝑌 + 𝑡))
5540, 51, 54syl2an 596 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 < (𝑌 + 𝑡))
5653, 55jca 511 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
5756adantrr 717 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
58 simprlr 779 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑐 ∈ ℝ+)
59 eqid 2729 . . . . . 6 (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐))))) = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐)))))
60 pntlemp.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6160adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
62 rpxr 12961 . . . . . . . . . 10 (𝑡 ∈ ℝ+𝑡 ∈ ℝ*)
6362ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ*)
64 rpre 12960 . . . . . . . . . . 11 (𝑡 ∈ ℝ+𝑡 ∈ ℝ)
6564ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ)
6653rpred 12995 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ)
6739adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 ∈ ℝ+)
6865, 67ltaddrp2d 13029 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 < (𝑌 + 𝑡))
6965, 66, 68ltled 11322 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ≤ (𝑌 + 𝑡))
70 iooss1 13341 . . . . . . . . 9 ((𝑡 ∈ ℝ*𝑡 ≤ (𝑌 + 𝑡)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7163, 69, 70syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7271adantrr 717 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
73 simprrl 780 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
74 ssralv 4015 . . . . . . . 8 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7574ralimdv 3147 . . . . . . 7 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7672, 73, 75sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
77 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
7825, 45, 46, 47, 29, 30, 48, 49, 33, 3, 50, 57, 58, 59, 61, 76, 77pntleme 27519 . . . . 5 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
7978expr 456 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8079rexlimdvva 3194 . . 3 (𝜑 → (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8144, 80biimtrrid 243 . 2 (𝜑 → ((∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8237, 43, 81mp2and 699 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  3c3 12242  4c4 12243  cdc 12649  +crp 12951  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  ...cfz 13468  cfl 13752  cexp 14026  abscabs 15200  Σcsu 15652  expce 16027  logclog 26463  ψcchp 27003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-em 26903  df-cht 27007  df-vma 27008  df-chp 27009  df-ppi 27010  df-mu 27011
This theorem is referenced by:  pntleml  27522
  Copyright terms: Public domain W3C validator