MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemp Structured version   Visualization version   GIF version

Theorem pntlemp 27672
Description: Lemma for pnt 27676. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
pntlemp.u (𝜑𝑈 ∈ ℝ+)
pntlemp.u2 (𝜑𝑈𝐴)
pntlemp.e 𝐸 = (𝑈 / 𝐷)
pntlemp.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlemp.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlemp.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemp (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐷   𝑣,𝐹,𝑤,𝑦,𝑧   𝑒,𝐾,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑅,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐸,𝑎,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑎,𝑘,𝑣,𝑤,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑣,𝑤,𝑥,𝑦   𝐵,𝑒,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑈,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑥,𝑦,𝑢,𝑒,𝑘,𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑌(𝑥,𝑢,𝑒)

Proof of Theorem pntlemp
Dummy variables 𝑡 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . . . . 9 (𝑒 = 𝐸 → (𝐵 / 𝑒) = (𝐵 / 𝐸))
21fveq2d 6924 . . . . . . . 8 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = (exp‘(𝐵 / 𝐸)))
3 pntlemp.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
42, 3eqtr4di 2798 . . . . . . 7 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = 𝐾)
54oveq1d 7463 . . . . . 6 (𝑒 = 𝐸 → ((exp‘(𝐵 / 𝑒))[,)+∞) = (𝐾[,)+∞))
6 oveq2 7456 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝐿 · 𝑒) = (𝐿 · 𝐸))
76oveq2d 7464 . . . . . . . . . . . 12 (𝑒 = 𝐸 → (1 + (𝐿 · 𝑒)) = (1 + (𝐿 · 𝐸)))
87oveq1d 7463 . . . . . . . . . . 11 (𝑒 = 𝐸 → ((1 + (𝐿 · 𝑒)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑧))
98breq1d 5176 . . . . . . . . . 10 (𝑒 = 𝐸 → (((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)))
109anbi2d 629 . . . . . . . . 9 (𝑒 = 𝐸 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦))))
118oveq2d 7464 . . . . . . . . . 10 (𝑒 = 𝐸 → (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)))
12 breq2 5170 . . . . . . . . . 10 (𝑒 = 𝐸 → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1311, 12raleqbidv 3354 . . . . . . . . 9 (𝑒 = 𝐸 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1410, 13anbi12d 631 . . . . . . . 8 (𝑒 = 𝐸 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3185 . . . . . . 7 (𝑒 = 𝐸 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1615ralbidv 3184 . . . . . 6 (𝑒 = 𝐸 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
175, 16raleqbidv 3354 . . . . 5 (𝑒 = 𝐸 → (∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1817rexbidv 3185 . . . 4 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
19 oveq1 7455 . . . . . . 7 (𝑥 = 𝑡 → (𝑥(,)+∞) = (𝑡(,)+∞))
2019raleqdv 3334 . . . . . 6 (𝑥 = 𝑡 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2120ralbidv 3184 . . . . 5 (𝑥 = 𝑡 → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2221cbvrexvw 3244 . . . 4 (∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2318, 22bitrdi 287 . . 3 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
24 pntlemp.K . . 3 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
25 pntlem3.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
26 pntlem3.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
27 pntlemp.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
28 pntlemp.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
29 pntlemp.d . . . . . 6 𝐷 = (𝐴 + 1)
30 pntlemp.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
31 pntlemp.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
32 pntlemp.u2 . . . . . 6 (𝜑𝑈𝐴)
33 pntlemp.e . . . . . 6 𝐸 = (𝑈 / 𝐷)
3425, 26, 27, 28, 29, 30, 31, 32, 33, 3pntlemc 27657 . . . . 5 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3534simp3d 1144 . . . 4 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3635simp1d 1142 . . 3 (𝜑𝐸 ∈ (0(,)1))
3723, 24, 36rspcdva 3636 . 2 (𝜑 → ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
38 pntlemp.y . . . . 5 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
3938simpld 494 . . . 4 (𝜑𝑌 ∈ ℝ+)
4039rpred 13099 . . 3 (𝜑𝑌 ∈ ℝ)
4138simprd 495 . . 3 (𝜑 → 1 ≤ 𝑌)
4225pntrlog2bnd 27646 . . 3 ((𝑌 ∈ ℝ ∧ 1 ≤ 𝑌) → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
4340, 41, 42syl2anc 583 . 2 (𝜑 → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
44 reeanv 3235 . . 3 (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) ↔ (∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))
4526adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐴 ∈ ℝ+)
4627adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐵 ∈ ℝ+)
4728adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐿 ∈ (0(,)1))
4831adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈 ∈ ℝ+)
4932adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈𝐴)
5038adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
51 simpl 482 . . . . . . . . 9 ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) → 𝑡 ∈ ℝ+)
52 rpaddcl 13079 . . . . . . . . 9 ((𝑌 ∈ ℝ+𝑡 ∈ ℝ+) → (𝑌 + 𝑡) ∈ ℝ+)
5339, 51, 52syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ+)
54 ltaddrp 13094 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ 𝑡 ∈ ℝ+) → 𝑌 < (𝑌 + 𝑡))
5540, 51, 54syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 < (𝑌 + 𝑡))
5653, 55jca 511 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
5756adantrr 716 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
58 simprlr 779 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑐 ∈ ℝ+)
59 eqid 2740 . . . . . 6 (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐))))) = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐)))))
60 pntlemp.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6160adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
62 rpxr 13066 . . . . . . . . . 10 (𝑡 ∈ ℝ+𝑡 ∈ ℝ*)
6362ad2antrl 727 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ*)
64 rpre 13065 . . . . . . . . . . 11 (𝑡 ∈ ℝ+𝑡 ∈ ℝ)
6564ad2antrl 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ)
6653rpred 13099 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ)
6739adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 ∈ ℝ+)
6865, 67ltaddrp2d 13133 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 < (𝑌 + 𝑡))
6965, 66, 68ltled 11438 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ≤ (𝑌 + 𝑡))
70 iooss1 13442 . . . . . . . . 9 ((𝑡 ∈ ℝ*𝑡 ≤ (𝑌 + 𝑡)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7163, 69, 70syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7271adantrr 716 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
73 simprrl 780 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
74 ssralv 4077 . . . . . . . 8 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7574ralimdv 3175 . . . . . . 7 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7672, 73, 75sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
77 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
7825, 45, 46, 47, 29, 30, 48, 49, 33, 3, 50, 57, 58, 59, 61, 76, 77pntleme 27670 . . . . 5 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
7978expr 456 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8079rexlimdvva 3219 . . 3 (𝜑 → (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8144, 80biimtrrid 243 . 2 (𝜑 → ((∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8237, 43, 81mp2and 698 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  3c3 12349  4c4 12350  cdc 12758  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  ...cfz 13567  cfl 13841  cexp 14112  abscabs 15283  Σcsu 15734  expce 16109  logclog 26614  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-cxp 26617  df-atan 26928  df-em 27054  df-cht 27158  df-vma 27159  df-chp 27160  df-ppi 27161  df-mu 27162
This theorem is referenced by:  pntleml  27673
  Copyright terms: Public domain W3C validator