MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemp Structured version   Visualization version   GIF version

Theorem pntlemp 27588
Description: Lemma for pnt 27592. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
pntlemp.u (𝜑𝑈 ∈ ℝ+)
pntlemp.u2 (𝜑𝑈𝐴)
pntlemp.e 𝐸 = (𝑈 / 𝐷)
pntlemp.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlemp.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlemp.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemp (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐷   𝑣,𝐹,𝑤,𝑦,𝑧   𝑒,𝐾,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑅,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐸,𝑎,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑎,𝑘,𝑣,𝑤,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑣,𝑤,𝑥,𝑦   𝐵,𝑒,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑈,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑥,𝑦,𝑢,𝑒,𝑘,𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑌(𝑥,𝑢,𝑒)

Proof of Theorem pntlemp
Dummy variables 𝑡 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7427 . . . . . . . . 9 (𝑒 = 𝐸 → (𝐵 / 𝑒) = (𝐵 / 𝐸))
21fveq2d 6900 . . . . . . . 8 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = (exp‘(𝐵 / 𝐸)))
3 pntlemp.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
42, 3eqtr4di 2783 . . . . . . 7 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = 𝐾)
54oveq1d 7434 . . . . . 6 (𝑒 = 𝐸 → ((exp‘(𝐵 / 𝑒))[,)+∞) = (𝐾[,)+∞))
6 oveq2 7427 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝐿 · 𝑒) = (𝐿 · 𝐸))
76oveq2d 7435 . . . . . . . . . . . 12 (𝑒 = 𝐸 → (1 + (𝐿 · 𝑒)) = (1 + (𝐿 · 𝐸)))
87oveq1d 7434 . . . . . . . . . . 11 (𝑒 = 𝐸 → ((1 + (𝐿 · 𝑒)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑧))
98breq1d 5159 . . . . . . . . . 10 (𝑒 = 𝐸 → (((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)))
109anbi2d 628 . . . . . . . . 9 (𝑒 = 𝐸 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦))))
118oveq2d 7435 . . . . . . . . . 10 (𝑒 = 𝐸 → (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)))
12 breq2 5153 . . . . . . . . . 10 (𝑒 = 𝐸 → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1311, 12raleqbidv 3329 . . . . . . . . 9 (𝑒 = 𝐸 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1410, 13anbi12d 630 . . . . . . . 8 (𝑒 = 𝐸 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3168 . . . . . . 7 (𝑒 = 𝐸 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1615ralbidv 3167 . . . . . 6 (𝑒 = 𝐸 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
175, 16raleqbidv 3329 . . . . 5 (𝑒 = 𝐸 → (∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1817rexbidv 3168 . . . 4 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
19 oveq1 7426 . . . . . . 7 (𝑥 = 𝑡 → (𝑥(,)+∞) = (𝑡(,)+∞))
2019raleqdv 3314 . . . . . 6 (𝑥 = 𝑡 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2120ralbidv 3167 . . . . 5 (𝑥 = 𝑡 → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2221cbvrexvw 3225 . . . 4 (∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2318, 22bitrdi 286 . . 3 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
24 pntlemp.K . . 3 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
25 pntlem3.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
26 pntlem3.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
27 pntlemp.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
28 pntlemp.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
29 pntlemp.d . . . . . 6 𝐷 = (𝐴 + 1)
30 pntlemp.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
31 pntlemp.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
32 pntlemp.u2 . . . . . 6 (𝜑𝑈𝐴)
33 pntlemp.e . . . . . 6 𝐸 = (𝑈 / 𝐷)
3425, 26, 27, 28, 29, 30, 31, 32, 33, 3pntlemc 27573 . . . . 5 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3534simp3d 1141 . . . 4 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3635simp1d 1139 . . 3 (𝜑𝐸 ∈ (0(,)1))
3723, 24, 36rspcdva 3607 . 2 (𝜑 → ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
38 pntlemp.y . . . . 5 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
3938simpld 493 . . . 4 (𝜑𝑌 ∈ ℝ+)
4039rpred 13051 . . 3 (𝜑𝑌 ∈ ℝ)
4138simprd 494 . . 3 (𝜑 → 1 ≤ 𝑌)
4225pntrlog2bnd 27562 . . 3 ((𝑌 ∈ ℝ ∧ 1 ≤ 𝑌) → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
4340, 41, 42syl2anc 582 . 2 (𝜑 → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
44 reeanv 3216 . . 3 (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) ↔ (∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))
4526adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐴 ∈ ℝ+)
4627adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐵 ∈ ℝ+)
4728adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐿 ∈ (0(,)1))
4831adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈 ∈ ℝ+)
4932adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈𝐴)
5038adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
51 simpl 481 . . . . . . . . 9 ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) → 𝑡 ∈ ℝ+)
52 rpaddcl 13031 . . . . . . . . 9 ((𝑌 ∈ ℝ+𝑡 ∈ ℝ+) → (𝑌 + 𝑡) ∈ ℝ+)
5339, 51, 52syl2an 594 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ+)
54 ltaddrp 13046 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ 𝑡 ∈ ℝ+) → 𝑌 < (𝑌 + 𝑡))
5540, 51, 54syl2an 594 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 < (𝑌 + 𝑡))
5653, 55jca 510 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
5756adantrr 715 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
58 simprlr 778 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑐 ∈ ℝ+)
59 eqid 2725 . . . . . 6 (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐))))) = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐)))))
60 pntlemp.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6160adantr 479 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
62 rpxr 13018 . . . . . . . . . 10 (𝑡 ∈ ℝ+𝑡 ∈ ℝ*)
6362ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ*)
64 rpre 13017 . . . . . . . . . . 11 (𝑡 ∈ ℝ+𝑡 ∈ ℝ)
6564ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ)
6653rpred 13051 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ)
6739adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 ∈ ℝ+)
6865, 67ltaddrp2d 13085 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 < (𝑌 + 𝑡))
6965, 66, 68ltled 11394 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ≤ (𝑌 + 𝑡))
70 iooss1 13394 . . . . . . . . 9 ((𝑡 ∈ ℝ*𝑡 ≤ (𝑌 + 𝑡)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7163, 69, 70syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7271adantrr 715 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
73 simprrl 779 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
74 ssralv 4045 . . . . . . . 8 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7574ralimdv 3158 . . . . . . 7 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7672, 73, 75sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
77 simprrr 780 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
7825, 45, 46, 47, 29, 30, 48, 49, 33, 3, 50, 57, 58, 59, 61, 76, 77pntleme 27586 . . . . 5 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
7978expr 455 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8079rexlimdvva 3201 . . 3 (𝜑 → (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8144, 80biimtrrid 242 . 2 (𝜑 → ((∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8237, 43, 81mp2and 697 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  wss 3944   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  +∞cpnf 11277  *cxr 11279   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  2c2 12300  3c3 12301  4c4 12302  cdc 12710  +crp 13009  (,)cioo 13359  [,)cico 13361  [,]cicc 13362  ...cfz 13519  cfl 13791  cexp 14062  abscabs 15217  Σcsu 15668  expce 16041  logclog 26533  ψcchp 27070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-o1 15470  df-lo1 15471  df-sum 15669  df-ef 16047  df-e 16048  df-sin 16049  df-cos 16050  df-tan 16051  df-pi 16052  df-dvds 16235  df-gcd 16473  df-prm 16646  df-pc 16809  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-ulm 26358  df-log 26535  df-cxp 26536  df-atan 26844  df-em 26970  df-cht 27074  df-vma 27075  df-chp 27076  df-ppi 27077  df-mu 27078
This theorem is referenced by:  pntleml  27589
  Copyright terms: Public domain W3C validator