MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemp Structured version   Visualization version   GIF version

Theorem pntlemp 26756
Description: Lemma for pnt 26760. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
pntlemp.u (𝜑𝑈 ∈ ℝ+)
pntlemp.u2 (𝜑𝑈𝐴)
pntlemp.e 𝐸 = (𝑈 / 𝐷)
pntlemp.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlemp.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlemp.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemp (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐷   𝑣,𝐹,𝑤,𝑦,𝑧   𝑒,𝐾,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑅,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐸,𝑎,𝑒,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑎,𝑘,𝑣,𝑤,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑣,𝑤,𝑥,𝑦   𝐵,𝑒,𝑘,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑈,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑥,𝑦,𝑢,𝑒,𝑘,𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑌(𝑥,𝑢,𝑒)

Proof of Theorem pntlemp
Dummy variables 𝑡 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7279 . . . . . . . . 9 (𝑒 = 𝐸 → (𝐵 / 𝑒) = (𝐵 / 𝐸))
21fveq2d 6775 . . . . . . . 8 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = (exp‘(𝐵 / 𝐸)))
3 pntlemp.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
42, 3eqtr4di 2798 . . . . . . 7 (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = 𝐾)
54oveq1d 7286 . . . . . 6 (𝑒 = 𝐸 → ((exp‘(𝐵 / 𝑒))[,)+∞) = (𝐾[,)+∞))
6 oveq2 7279 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝐿 · 𝑒) = (𝐿 · 𝐸))
76oveq2d 7287 . . . . . . . . . . . 12 (𝑒 = 𝐸 → (1 + (𝐿 · 𝑒)) = (1 + (𝐿 · 𝐸)))
87oveq1d 7286 . . . . . . . . . . 11 (𝑒 = 𝐸 → ((1 + (𝐿 · 𝑒)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑧))
98breq1d 5089 . . . . . . . . . 10 (𝑒 = 𝐸 → (((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)))
109anbi2d 629 . . . . . . . . 9 (𝑒 = 𝐸 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦))))
118oveq2d 7287 . . . . . . . . . 10 (𝑒 = 𝐸 → (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧)))
12 breq2 5083 . . . . . . . . . 10 (𝑒 = 𝐸 → ((abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ (abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1311, 12raleqbidv 3335 . . . . . . . . 9 (𝑒 = 𝐸 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
1410, 13anbi12d 631 . . . . . . . 8 (𝑒 = 𝐸 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1514rexbidv 3228 . . . . . . 7 (𝑒 = 𝐸 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1615ralbidv 3123 . . . . . 6 (𝑒 = 𝐸 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
175, 16raleqbidv 3335 . . . . 5 (𝑒 = 𝐸 → (∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
1817rexbidv 3228 . . . 4 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
19 oveq1 7278 . . . . . . 7 (𝑥 = 𝑡 → (𝑥(,)+∞) = (𝑡(,)+∞))
2019raleqdv 3347 . . . . . 6 (𝑥 = 𝑡 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2120ralbidv 3123 . . . . 5 (𝑥 = 𝑡 → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2221cbvrexvw 3382 . . . 4 (∃𝑥 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2318, 22bitrdi 287 . . 3 (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
24 pntlemp.K . . 3 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
25 pntlem3.r . . . . . 6 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
26 pntlem3.a . . . . . 6 (𝜑𝐴 ∈ ℝ+)
27 pntlemp.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
28 pntlemp.l . . . . . 6 (𝜑𝐿 ∈ (0(,)1))
29 pntlemp.d . . . . . 6 𝐷 = (𝐴 + 1)
30 pntlemp.f . . . . . 6 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
31 pntlemp.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
32 pntlemp.u2 . . . . . 6 (𝜑𝑈𝐴)
33 pntlemp.e . . . . . 6 𝐸 = (𝑈 / 𝐷)
3425, 26, 27, 28, 29, 30, 31, 32, 33, 3pntlemc 26741 . . . . 5 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3534simp3d 1143 . . . 4 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3635simp1d 1141 . . 3 (𝜑𝐸 ∈ (0(,)1))
3723, 24, 36rspcdva 3563 . 2 (𝜑 → ∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
38 pntlemp.y . . . . 5 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
3938simpld 495 . . . 4 (𝜑𝑌 ∈ ℝ+)
4039rpred 12771 . . 3 (𝜑𝑌 ∈ ℝ)
4138simprd 496 . . 3 (𝜑 → 1 ≤ 𝑌)
4225pntrlog2bnd 26730 . . 3 ((𝑌 ∈ ℝ ∧ 1 ≤ 𝑌) → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
4340, 41, 42syl2anc 584 . 2 (𝜑 → ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
44 reeanv 3295 . . 3 (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) ↔ (∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))
4526adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐴 ∈ ℝ+)
4627adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐵 ∈ ℝ+)
4728adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐿 ∈ (0(,)1))
4831adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈 ∈ ℝ+)
4932adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈𝐴)
5038adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
51 simpl 483 . . . . . . . . 9 ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) → 𝑡 ∈ ℝ+)
52 rpaddcl 12751 . . . . . . . . 9 ((𝑌 ∈ ℝ+𝑡 ∈ ℝ+) → (𝑌 + 𝑡) ∈ ℝ+)
5339, 51, 52syl2an 596 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ+)
54 ltaddrp 12766 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ 𝑡 ∈ ℝ+) → 𝑌 < (𝑌 + 𝑡))
5540, 51, 54syl2an 596 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 < (𝑌 + 𝑡))
5653, 55jca 512 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
5756adantrr 714 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡) ∈ ℝ+𝑌 < (𝑌 + 𝑡)))
58 simprlr 777 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑐 ∈ ℝ+)
59 eqid 2740 . . . . . 6 (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐))))) = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐)))))
60 pntlemp.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6160adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
62 rpxr 12738 . . . . . . . . . 10 (𝑡 ∈ ℝ+𝑡 ∈ ℝ*)
6362ad2antrl 725 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ*)
64 rpre 12737 . . . . . . . . . . 11 (𝑡 ∈ ℝ+𝑡 ∈ ℝ)
6564ad2antrl 725 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ∈ ℝ)
6653rpred 12771 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → (𝑌 + 𝑡) ∈ ℝ)
6739adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑌 ∈ ℝ+)
6865, 67ltaddrp2d 12805 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 < (𝑌 + 𝑡))
6965, 66, 68ltled 11123 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → 𝑡 ≤ (𝑌 + 𝑡))
70 iooss1 13113 . . . . . . . . 9 ((𝑡 ∈ ℝ*𝑡 ≤ (𝑌 + 𝑡)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7163, 69, 70syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
7271adantrr 714 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞))
73 simprrl 778 . . . . . . 7 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
74 ssralv 3992 . . . . . . . 8 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7574ralimdv 3106 . . . . . . 7 (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
7672, 73, 75sylc 65 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
77 simprrr 779 . . . . . 6 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)
7825, 45, 46, 47, 29, 30, 48, 49, 33, 3, 50, 57, 58, 59, 61, 76, 77pntleme 26754 . . . . 5 ((𝜑 ∧ ((𝑡 ∈ ℝ+𝑐 ∈ ℝ+) ∧ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
7978expr 457 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+𝑐 ∈ ℝ+)) → ((∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8079rexlimdvva 3225 . . 3 (𝜑 → (∃𝑡 ∈ ℝ+𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8144, 80syl5bir 242 . 2 (𝜑 → ((∃𝑡 ∈ ℝ+𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))))
8237, 43, 81mp2and 696 1 (𝜑 → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  wrex 3067  wss 3892   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  +∞cpnf 11007  *cxr 11009   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  2c2 12028  3c3 12029  4c4 12030  cdc 12436  +crp 12729  (,)cioo 13078  [,)cico 13080  [,]cicc 13081  ...cfz 13238  cfl 13508  cexp 13780  abscabs 14943  Σcsu 15395  expce 15769  logclog 25708  ψcchp 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-o1 15197  df-lo1 15198  df-sum 15396  df-ef 15775  df-e 15776  df-sin 15777  df-cos 15778  df-tan 15779  df-pi 15780  df-dvds 15962  df-gcd 16200  df-prm 16375  df-pc 16536  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-ulm 25534  df-log 25710  df-cxp 25711  df-atan 26015  df-em 26140  df-cht 26244  df-vma 26245  df-chp 26246  df-ppi 26247  df-mu 26248
This theorem is referenced by:  pntleml  26757
  Copyright terms: Public domain W3C validator