| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . . . . . . . 9
⊢ (𝑒 = 𝐸 → (𝐵 / 𝑒) = (𝐵 / 𝐸)) | 
| 2 | 1 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = (exp‘(𝐵 / 𝐸))) | 
| 3 |  | pntlemp.k | . . . . . . . 8
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | 
| 4 | 2, 3 | eqtr4di 2794 | . . . . . . 7
⊢ (𝑒 = 𝐸 → (exp‘(𝐵 / 𝑒)) = 𝐾) | 
| 5 | 4 | oveq1d 7447 | . . . . . 6
⊢ (𝑒 = 𝐸 → ((exp‘(𝐵 / 𝑒))[,)+∞) = (𝐾[,)+∞)) | 
| 6 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑒 = 𝐸 → (𝐿 · 𝑒) = (𝐿 · 𝐸)) | 
| 7 | 6 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑒 = 𝐸 → (1 + (𝐿 · 𝑒)) = (1 + (𝐿 · 𝐸))) | 
| 8 | 7 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝑒 = 𝐸 → ((1 + (𝐿 · 𝑒)) · 𝑧) = ((1 + (𝐿 · 𝐸)) · 𝑧)) | 
| 9 | 8 | breq1d 5152 | . . . . . . . . . 10
⊢ (𝑒 = 𝐸 → (((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦))) | 
| 10 | 9 | anbi2d 630 | . . . . . . . . 9
⊢ (𝑒 = 𝐸 → ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)))) | 
| 11 | 8 | oveq2d 7448 | . . . . . . . . . 10
⊢ (𝑒 = 𝐸 → (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))) | 
| 12 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑒 = 𝐸 → ((abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒 ↔ (abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | 
| 13 | 11, 12 | raleqbidv 3345 | . . . . . . . . 9
⊢ (𝑒 = 𝐸 → (∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | 
| 14 | 10, 13 | anbi12d 632 | . . . . . . . 8
⊢ (𝑒 = 𝐸 → (((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 15 | 14 | rexbidv 3178 | . . . . . . 7
⊢ (𝑒 = 𝐸 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 16 | 15 | ralbidv 3177 | . . . . . 6
⊢ (𝑒 = 𝐸 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 17 | 5, 16 | raleqbidv 3345 | . . . . 5
⊢ (𝑒 = 𝐸 → (∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 18 | 17 | rexbidv 3178 | . . . 4
⊢ (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 19 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑥 = 𝑡 → (𝑥(,)+∞) = (𝑡(,)+∞)) | 
| 20 | 19 | raleqdv 3325 | . . . . . 6
⊢ (𝑥 = 𝑡 → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 21 | 20 | ralbidv 3177 | . . . . 5
⊢ (𝑥 = 𝑡 → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 22 | 21 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑥 ∈
ℝ+ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∃𝑡 ∈ ℝ+ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | 
| 23 | 18, 22 | bitrdi 287 | . . 3
⊢ (𝑒 = 𝐸 → (∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑡 ∈ ℝ+ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 24 |  | pntlemp.K | . . 3
⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) | 
| 25 |  | pntlem3.r | . . . . . 6
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) | 
| 26 |  | pntlem3.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 27 |  | pntlemp.b | . . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ+) | 
| 28 |  | pntlemp.l | . . . . . 6
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | 
| 29 |  | pntlemp.d | . . . . . 6
⊢ 𝐷 = (𝐴 + 1) | 
| 30 |  | pntlemp.f | . . . . . 6
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | 
| 31 |  | pntlemp.u | . . . . . 6
⊢ (𝜑 → 𝑈 ∈
ℝ+) | 
| 32 |  | pntlemp.u2 | . . . . . 6
⊢ (𝜑 → 𝑈 ≤ 𝐴) | 
| 33 |  | pntlemp.e | . . . . . 6
⊢ 𝐸 = (𝑈 / 𝐷) | 
| 34 | 25, 26, 27, 28, 29, 30, 31, 32, 33, 3 | pntlemc 27640 | . . . . 5
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) | 
| 35 | 34 | simp3d 1144 | . . . 4
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) | 
| 36 | 35 | simp1d 1142 | . . 3
⊢ (𝜑 → 𝐸 ∈ (0(,)1)) | 
| 37 | 23, 24, 36 | rspcdva 3622 | . 2
⊢ (𝜑 → ∃𝑡 ∈ ℝ+ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | 
| 38 |  | pntlemp.y | . . . . 5
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) | 
| 39 | 38 | simpld 494 | . . . 4
⊢ (𝜑 → 𝑌 ∈
ℝ+) | 
| 40 | 39 | rpred 13078 | . . 3
⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| 41 | 38 | simprd 495 | . . 3
⊢ (𝜑 → 1 ≤ 𝑌) | 
| 42 | 25 | pntrlog2bnd 27629 | . . 3
⊢ ((𝑌 ∈ ℝ ∧ 1 ≤
𝑌) → ∃𝑐 ∈ ℝ+
∀𝑧 ∈
(1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) | 
| 43 | 40, 41, 42 | syl2anc 584 | . 2
⊢ (𝜑 → ∃𝑐 ∈ ℝ+ ∀𝑧 ∈
(1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) | 
| 44 |  | reeanv 3228 | . . 3
⊢
(∃𝑡 ∈
ℝ+ ∃𝑐 ∈ ℝ+ (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) ↔ (∃𝑡 ∈ ℝ+ ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈
(1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐)) | 
| 45 | 26 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐴 ∈
ℝ+) | 
| 46 | 27 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐵 ∈
ℝ+) | 
| 47 | 28 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝐿 ∈ (0(,)1)) | 
| 48 | 31 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈 ∈
ℝ+) | 
| 49 | 32 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑈 ≤ 𝐴) | 
| 50 | 38 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) | 
| 51 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑡 ∈ ℝ+
∧ 𝑐 ∈
ℝ+) → 𝑡 ∈ ℝ+) | 
| 52 |  | rpaddcl 13058 | . . . . . . . . 9
⊢ ((𝑌 ∈ ℝ+
∧ 𝑡 ∈
ℝ+) → (𝑌 + 𝑡) ∈
ℝ+) | 
| 53 | 39, 51, 52 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ (𝑌 + 𝑡) ∈
ℝ+) | 
| 54 |  | ltaddrp 13073 | . . . . . . . . 9
⊢ ((𝑌 ∈ ℝ ∧ 𝑡 ∈ ℝ+)
→ 𝑌 < (𝑌 + 𝑡)) | 
| 55 | 40, 51, 54 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ 𝑌 < (𝑌 + 𝑡)) | 
| 56 | 53, 55 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ ((𝑌 + 𝑡) ∈ ℝ+
∧ 𝑌 < (𝑌 + 𝑡))) | 
| 57 | 56 | adantrr 717 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡) ∈ ℝ+ ∧ 𝑌 < (𝑌 + 𝑡))) | 
| 58 |  | simprlr 779 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → 𝑐 ∈ ℝ+) | 
| 59 |  | eqid 2736 | . . . . . 6
⊢ (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐))))) = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + ((((𝑌 + 𝑡) · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝑐))))) | 
| 60 |  | pntlemp.U | . . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) | 
| 61 | 60 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) | 
| 62 |  | rpxr 13045 | . . . . . . . . . 10
⊢ (𝑡 ∈ ℝ+
→ 𝑡 ∈
ℝ*) | 
| 63 | 62 | ad2antrl 728 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ 𝑡 ∈
ℝ*) | 
| 64 |  | rpre 13044 | . . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ+
→ 𝑡 ∈
ℝ) | 
| 65 | 64 | ad2antrl 728 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ 𝑡 ∈
ℝ) | 
| 66 | 53 | rpred 13078 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ (𝑌 + 𝑡) ∈
ℝ) | 
| 67 | 39 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ 𝑌 ∈
ℝ+) | 
| 68 | 65, 67 | ltaddrp2d 13112 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ 𝑡 < (𝑌 + 𝑡)) | 
| 69 | 65, 66, 68 | ltled 11410 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ 𝑡 ≤ (𝑌 + 𝑡)) | 
| 70 |  | iooss1 13423 | . . . . . . . . 9
⊢ ((𝑡 ∈ ℝ*
∧ 𝑡 ≤ (𝑌 + 𝑡)) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞)) | 
| 71 | 63, 69, 70 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞)) | 
| 72 | 71 | adantrr 717 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞)) | 
| 73 |  | simprrl 780 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | 
| 74 |  | ssralv 4051 | . . . . . . . 8
⊢ (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 75 | 74 | ralimdv 3168 | . . . . . . 7
⊢ (((𝑌 + 𝑡)(,)+∞) ⊆ (𝑡(,)+∞) → (∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) | 
| 76 | 72, 73, 75 | sylc 65 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ ((𝑌 + 𝑡)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | 
| 77 |  | simprrr 781 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) | 
| 78 | 25, 45, 46, 47, 29, 30, 48, 49, 33, 3, 50, 57, 58, 59, 61, 76, 77 | pntleme 27653 | . . . . 5
⊢ ((𝜑 ∧ ((𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+)
∧ (∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐))) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | 
| 79 | 78 | expr 456 | . . . 4
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ 𝑐 ∈ ℝ+))
→ ((∀𝑘 ∈
(𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))) | 
| 80 | 79 | rexlimdvva 3212 | . . 3
⊢ (𝜑 → (∃𝑡 ∈ ℝ+ ∃𝑐 ∈ ℝ+
(∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))) | 
| 81 | 44, 80 | biimtrrid 243 | . 2
⊢ (𝜑 → ((∃𝑡 ∈ ℝ+
∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑡(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ∧ ∃𝑐 ∈ ℝ+ ∀𝑧 ∈
(1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑛 ∈
(1...(⌊‘(𝑧 /
𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))) / 𝑧) ≤ 𝑐) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))) | 
| 82 | 37, 43, 81 | mp2and 699 | 1
⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) |