Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltaddrp 12696 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 + caddc 10805 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-rp 12660 |
This theorem is referenced by: ltaddrp2d 12735 xov1plusxeqvd 13159 isumltss 15488 effsumlt 15748 tanhlt1 15797 4sqlem12 16585 vdwlem1 16610 prmgaplem7 16686 chfacfscmul0 21915 chfacfpmmul0 21919 nlmvscnlem2 23755 nlmvscnlem1 23756 iccntr 23890 icccmplem2 23892 reconnlem2 23896 opnreen 23900 lebnumii 24035 ipcnlem2 24313 ipcnlem1 24314 ivthlem2 24521 ovolgelb 24549 ovollb2lem 24557 itg2monolem3 24822 dvferm1lem 25053 lhop1lem 25082 lhop 25085 dvcnvrelem1 25086 dvcnvrelem2 25087 pserdvlem1 25491 pserdv 25493 lgamgulmlem2 26084 lgamgulmlem3 26085 lgamucov 26092 perfectlem2 26283 bposlem2 26338 pntibndlem2 26644 pntlemb 26650 pntlem3 26662 tpr2rico 31764 omssubaddlem 32166 fibp1 32268 heicant 35739 itg2addnc 35758 rrnequiv 35920 2np3bcnp1 40028 2ap1caineq 40029 pellfundex 40624 rmspecfund 40647 acongeq 40721 jm3.1lem2 40756 oddfl 42705 infrpge 42780 xralrple2 42783 xrralrecnnle 42812 iooiinicc 42970 iooiinioc 42984 fsumnncl 43003 climinf 43037 lptre2pt 43071 ioodvbdlimc1lem2 43363 wallispilem4 43499 dirkertrigeqlem3 43531 dirkercncflem2 43535 fourierdlem63 43600 fourierdlem65 43602 fourierdlem75 43612 fourierdlem79 43616 fouriersw 43662 etransclem35 43700 qndenserrnbllem 43725 omeiunltfirp 43947 hoidmvlelem1 44023 hoidmvlelem3 44025 hoiqssbllem3 44052 iinhoiicc 44102 iunhoiioo 44104 vonioolem2 44109 vonicclem1 44111 preimaleiinlt 44145 smfmullem3 44214 perfectALTVlem2 45062 |
Copyright terms: Public domain | W3C validator |