| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltaddrp 13046 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 + caddc 11132 < clt 11269 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-rp 13009 |
| This theorem is referenced by: ltaddrp2d 13085 xov1plusxeqvd 13515 isumltss 15864 effsumlt 16129 tanhlt1 16178 4sqlem12 16976 vdwlem1 17001 prmgaplem7 17077 chfacfscmul0 22796 chfacfpmmul0 22800 nlmvscnlem2 24624 nlmvscnlem1 24625 iccntr 24761 icccmplem2 24763 reconnlem2 24767 opnreen 24771 lebnumii 24916 ipcnlem2 25196 ipcnlem1 25197 ivthlem2 25405 ovolgelb 25433 ovollb2lem 25441 itg2monolem3 25705 dvferm1lem 25940 lhop1lem 25970 lhop 25973 dvcnvrelem1 25974 dvcnvrelem2 25975 pserdvlem1 26389 pserdv 26391 lgamgulmlem2 26992 lgamgulmlem3 26993 lgamucov 27000 perfectlem2 27193 bposlem2 27248 pntibndlem2 27554 pntlemb 27560 pntlem3 27572 tpr2rico 33943 omssubaddlem 34331 fibp1 34433 heicant 37679 itg2addnc 37698 rrnequiv 37859 2np3bcnp1 42157 2ap1caineq 42158 pellfundex 42909 rmspecfund 42932 acongeq 43007 jm3.1lem2 43042 oddfl 45306 infrpge 45378 xralrple2 45381 xrralrecnnle 45410 iooiinicc 45571 iooiinioc 45585 fsumnncl 45601 climinf 45635 lptre2pt 45669 ioodvbdlimc1lem2 45961 wallispilem4 46097 dirkertrigeqlem3 46129 dirkercncflem2 46133 fourierdlem63 46198 fourierdlem65 46200 fourierdlem75 46210 fourierdlem79 46214 fouriersw 46260 etransclem35 46298 qndenserrnbllem 46323 omeiunltfirp 46548 hoidmvlelem1 46624 hoidmvlelem3 46626 hoiqssbllem3 46653 iinhoiicc 46703 iunhoiioo 46705 vonioolem2 46710 vonicclem1 46712 preimaleiinlt 46750 smfmullem3 46822 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |