| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltaddrp 12950 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 + caddc 11031 < clt 11168 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-rp 12912 |
| This theorem is referenced by: ltaddrp2d 12989 xov1plusxeqvd 13419 isumltss 15773 effsumlt 16038 tanhlt1 16087 4sqlem12 16886 vdwlem1 16911 prmgaplem7 16987 chfacfscmul0 22761 chfacfpmmul0 22765 nlmvscnlem2 24589 nlmvscnlem1 24590 iccntr 24726 icccmplem2 24728 reconnlem2 24732 opnreen 24736 lebnumii 24881 ipcnlem2 25160 ipcnlem1 25161 ivthlem2 25369 ovolgelb 25397 ovollb2lem 25405 itg2monolem3 25669 dvferm1lem 25904 lhop1lem 25934 lhop 25937 dvcnvrelem1 25938 dvcnvrelem2 25939 pserdvlem1 26353 pserdv 26355 lgamgulmlem2 26956 lgamgulmlem3 26957 lgamucov 26964 perfectlem2 27157 bposlem2 27212 pntibndlem2 27518 pntlemb 27524 pntlem3 27536 tpr2rico 33878 omssubaddlem 34266 fibp1 34368 heicant 37634 itg2addnc 37653 rrnequiv 37814 2np3bcnp1 42117 2ap1caineq 42118 pellfundex 42859 rmspecfund 42882 acongeq 42956 jm3.1lem2 42991 oddfl 45260 infrpge 45331 xralrple2 45334 xrralrecnnle 45363 iooiinicc 45524 iooiinioc 45538 fsumnncl 45554 climinf 45588 lptre2pt 45622 ioodvbdlimc1lem2 45914 wallispilem4 46050 dirkertrigeqlem3 46082 dirkercncflem2 46086 fourierdlem63 46151 fourierdlem65 46153 fourierdlem75 46163 fourierdlem79 46167 fouriersw 46213 etransclem35 46251 qndenserrnbllem 46276 omeiunltfirp 46501 hoidmvlelem1 46577 hoidmvlelem3 46579 hoiqssbllem3 46606 iinhoiicc 46656 iunhoiioo 46658 vonioolem2 46663 vonicclem1 46665 preimaleiinlt 46703 smfmullem3 46775 perfectALTVlem2 47707 |
| Copyright terms: Public domain | W3C validator |