| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltaddrp 12931 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 + caddc 11016 < clt 11153 ℝ+crp 12892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-rp 12893 |
| This theorem is referenced by: ltaddrp2d 12970 xov1plusxeqvd 13400 isumltss 15757 effsumlt 16022 tanhlt1 16071 4sqlem12 16870 vdwlem1 16895 prmgaplem7 16971 chfacfscmul0 22774 chfacfpmmul0 22778 nlmvscnlem2 24601 nlmvscnlem1 24602 iccntr 24738 icccmplem2 24740 reconnlem2 24744 opnreen 24748 lebnumii 24893 ipcnlem2 25172 ipcnlem1 25173 ivthlem2 25381 ovolgelb 25409 ovollb2lem 25417 itg2monolem3 25681 dvferm1lem 25916 lhop1lem 25946 lhop 25949 dvcnvrelem1 25950 dvcnvrelem2 25951 pserdvlem1 26365 pserdv 26367 lgamgulmlem2 26968 lgamgulmlem3 26969 lgamucov 26976 perfectlem2 27169 bposlem2 27224 pntibndlem2 27530 pntlemb 27536 pntlem3 27548 tpr2rico 33946 omssubaddlem 34333 fibp1 34435 heicant 37715 itg2addnc 37734 rrnequiv 37895 2np3bcnp1 42257 2ap1caineq 42258 pellfundex 43003 rmspecfund 43026 acongeq 43100 jm3.1lem2 43135 oddfl 45403 infrpge 45474 xralrple2 45477 xrralrecnnle 45505 iooiinicc 45666 iooiinioc 45680 fsumnncl 45696 climinf 45730 lptre2pt 45762 ioodvbdlimc1lem2 46054 wallispilem4 46190 dirkertrigeqlem3 46222 dirkercncflem2 46226 fourierdlem63 46291 fourierdlem65 46293 fourierdlem75 46303 fourierdlem79 46307 fouriersw 46353 etransclem35 46391 qndenserrnbllem 46416 omeiunltfirp 46641 hoidmvlelem1 46717 hoidmvlelem3 46719 hoiqssbllem3 46746 iinhoiicc 46796 iunhoiioo 46798 vonioolem2 46803 vonicclem1 46805 preimaleiinlt 46843 smfmullem3 46915 perfectALTVlem2 47846 |
| Copyright terms: Public domain | W3C validator |