![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltaddrp 12243 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 576 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 class class class wbr 4929 (class class class)co 6976 ℝcr 10334 + caddc 10338 < clt 10474 ℝ+crp 12204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 df-rp 12205 |
This theorem is referenced by: ltaddrp2d 12282 xov1plusxeqvd 12700 isumltss 15063 effsumlt 15324 tanhlt1 15373 4sqlem12 16148 vdwlem1 16173 prmgaplem7 16249 chfacfscmul0 21170 chfacfpmmul0 21174 nlmvscnlem2 22997 nlmvscnlem1 22998 iccntr 23132 icccmplem2 23134 reconnlem2 23138 opnreen 23142 lebnumii 23273 ipcnlem2 23550 ipcnlem1 23551 ivthlem2 23756 ovolgelb 23784 ovollb2lem 23792 itg2monolem3 24056 dvferm1lem 24284 lhop1lem 24313 lhop 24316 dvcnvrelem1 24317 dvcnvrelem2 24318 pserdvlem1 24718 pserdv 24720 lgamgulmlem2 25309 lgamgulmlem3 25310 lgamucov 25317 perfectlem2 25508 bposlem2 25563 pntibndlem2 25869 pntlemb 25875 pntlem3 25887 tpr2rico 30805 omssubaddlem 31208 fibp1 31311 heicant 34374 itg2addnc 34393 rrnequiv 34561 pellfundex 38885 rmspecfund 38908 acongeq 38982 jm3.1lem2 39017 oddfl 40978 infrpge 41054 xralrple2 41057 xrralrecnnle 41089 iooiinicc 41255 iooiinioc 41269 fsumnncl 41289 climinf 41324 lptre2pt 41358 ioodvbdlimc1lem2 41653 wallispilem4 41790 dirkertrigeqlem3 41822 dirkercncflem2 41826 fourierdlem63 41891 fourierdlem65 41893 fourierdlem75 41903 fourierdlem79 41907 fouriersw 41953 etransclem35 41991 qndenserrnbllem 42016 omeiunltfirp 42238 hoidmvlelem1 42314 hoidmvlelem3 42316 hoiqssbllem3 42343 iinhoiicc 42393 iunhoiioo 42395 vonioolem2 42400 vonicclem1 42402 preimaleiinlt 42436 smfmullem3 42505 perfectALTVlem2 43261 |
Copyright terms: Public domain | W3C validator |