Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5106 (class class class)co 7358
ℝcr 11051 + caddc 11055 < clt 11190
ℝ+crp 12916 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-ltxr 11195 df-rp 12917 |
This theorem is referenced by: ltaddrp2d
12992 xov1plusxeqvd
13416 isumltss
15734 effsumlt
15994 tanhlt1
16043 4sqlem12
16829 vdwlem1
16854 prmgaplem7
16930 chfacfscmul0
22210 chfacfpmmul0
22214 nlmvscnlem2
24052 nlmvscnlem1
24053 iccntr
24187 icccmplem2
24189 reconnlem2
24193 opnreen
24197 lebnumii
24332 ipcnlem2
24611 ipcnlem1
24612 ivthlem2
24819 ovolgelb
24847 ovollb2lem
24855 itg2monolem3
25120 dvferm1lem
25351 lhop1lem
25380 lhop
25383 dvcnvrelem1
25384 dvcnvrelem2
25385 pserdvlem1
25789 pserdv
25791 lgamgulmlem2
26382 lgamgulmlem3
26383 lgamucov
26390 perfectlem2
26581 bposlem2
26636 pntibndlem2
26942 pntlemb
26948 pntlem3
26960 tpr2rico
32496 omssubaddlem
32902 fibp1
33004 heicant
36116 itg2addnc
36135 rrnequiv
36297 2np3bcnp1
40555 2ap1caineq
40556 pellfundex
41212 rmspecfund
41235 acongeq
41310 jm3.1lem2
41345 oddfl
43518 infrpge
43592 xralrple2
43595 xrralrecnnle
43624 iooiinicc
43787 iooiinioc
43801 fsumnncl
43820 climinf
43854 lptre2pt
43888 ioodvbdlimc1lem2
44180 wallispilem4
44316 dirkertrigeqlem3
44348 dirkercncflem2
44352 fourierdlem63
44417 fourierdlem65
44419 fourierdlem75
44429 fourierdlem79
44433 fouriersw
44479 etransclem35
44517 qndenserrnbllem
44542 omeiunltfirp
44767 hoidmvlelem1
44843 hoidmvlelem3
44845 hoiqssbllem3
44872 iinhoiicc
44922 iunhoiioo
44924 vonioolem2
44929 vonicclem1
44931 preimaleiinlt
44969 smfmullem3
45041 perfectALTVlem2
45921 |