![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltaddrp 13069 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 + caddc 11155 < clt 11292 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-rp 13032 |
This theorem is referenced by: ltaddrp2d 13108 xov1plusxeqvd 13534 isumltss 15880 effsumlt 16143 tanhlt1 16192 4sqlem12 16989 vdwlem1 17014 prmgaplem7 17090 chfacfscmul0 22879 chfacfpmmul0 22883 nlmvscnlem2 24721 nlmvscnlem1 24722 iccntr 24856 icccmplem2 24858 reconnlem2 24862 opnreen 24866 lebnumii 25011 ipcnlem2 25291 ipcnlem1 25292 ivthlem2 25500 ovolgelb 25528 ovollb2lem 25536 itg2monolem3 25801 dvferm1lem 26036 lhop1lem 26066 lhop 26069 dvcnvrelem1 26070 dvcnvrelem2 26071 pserdvlem1 26485 pserdv 26487 lgamgulmlem2 27087 lgamgulmlem3 27088 lgamucov 27095 perfectlem2 27288 bposlem2 27343 pntibndlem2 27649 pntlemb 27655 pntlem3 27667 tpr2rico 33872 omssubaddlem 34280 fibp1 34382 heicant 37641 itg2addnc 37660 rrnequiv 37821 2np3bcnp1 42125 2ap1caineq 42126 pellfundex 42873 rmspecfund 42896 acongeq 42971 jm3.1lem2 43006 oddfl 45227 infrpge 45300 xralrple2 45303 xrralrecnnle 45332 iooiinicc 45494 iooiinioc 45508 fsumnncl 45527 climinf 45561 lptre2pt 45595 ioodvbdlimc1lem2 45887 wallispilem4 46023 dirkertrigeqlem3 46055 dirkercncflem2 46059 fourierdlem63 46124 fourierdlem65 46126 fourierdlem75 46136 fourierdlem79 46140 fouriersw 46186 etransclem35 46224 qndenserrnbllem 46249 omeiunltfirp 46474 hoidmvlelem1 46550 hoidmvlelem3 46552 hoiqssbllem3 46579 iinhoiicc 46629 iunhoiioo 46631 vonioolem2 46636 vonicclem1 46638 preimaleiinlt 46676 smfmullem3 46748 perfectALTVlem2 47646 |
Copyright terms: Public domain | W3C validator |