| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltaddrp 12926 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11002 + caddc 11006 < clt 11143 ℝ+crp 12887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-rp 12888 |
| This theorem is referenced by: ltaddrp2d 12965 xov1plusxeqvd 13395 isumltss 15752 effsumlt 16017 tanhlt1 16066 4sqlem12 16865 vdwlem1 16890 prmgaplem7 16966 chfacfscmul0 22771 chfacfpmmul0 22775 nlmvscnlem2 24598 nlmvscnlem1 24599 iccntr 24735 icccmplem2 24737 reconnlem2 24741 opnreen 24745 lebnumii 24890 ipcnlem2 25169 ipcnlem1 25170 ivthlem2 25378 ovolgelb 25406 ovollb2lem 25414 itg2monolem3 25678 dvferm1lem 25913 lhop1lem 25943 lhop 25946 dvcnvrelem1 25947 dvcnvrelem2 25948 pserdvlem1 26362 pserdv 26364 lgamgulmlem2 26965 lgamgulmlem3 26966 lgamucov 26973 perfectlem2 27166 bposlem2 27221 pntibndlem2 27527 pntlemb 27533 pntlem3 27545 tpr2rico 33920 omssubaddlem 34307 fibp1 34409 heicant 37694 itg2addnc 37713 rrnequiv 37874 2np3bcnp1 42176 2ap1caineq 42177 pellfundex 42918 rmspecfund 42941 acongeq 43015 jm3.1lem2 43050 oddfl 45318 infrpge 45389 xralrple2 45392 xrralrecnnle 45420 iooiinicc 45581 iooiinioc 45595 fsumnncl 45611 climinf 45645 lptre2pt 45677 ioodvbdlimc1lem2 45969 wallispilem4 46105 dirkertrigeqlem3 46137 dirkercncflem2 46141 fourierdlem63 46206 fourierdlem65 46208 fourierdlem75 46218 fourierdlem79 46222 fouriersw 46268 etransclem35 46306 qndenserrnbllem 46331 omeiunltfirp 46556 hoidmvlelem1 46632 hoidmvlelem3 46634 hoiqssbllem3 46661 iinhoiicc 46711 iunhoiioo 46713 vonioolem2 46718 vonicclem1 46720 preimaleiinlt 46758 smfmullem3 46830 perfectALTVlem2 47752 |
| Copyright terms: Public domain | W3C validator |