![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltaddrp 13094 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 + caddc 11187 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-rp 13058 |
This theorem is referenced by: ltaddrp2d 13133 xov1plusxeqvd 13558 isumltss 15896 effsumlt 16159 tanhlt1 16208 4sqlem12 17003 vdwlem1 17028 prmgaplem7 17104 chfacfscmul0 22885 chfacfpmmul0 22889 nlmvscnlem2 24727 nlmvscnlem1 24728 iccntr 24862 icccmplem2 24864 reconnlem2 24868 opnreen 24872 lebnumii 25017 ipcnlem2 25297 ipcnlem1 25298 ivthlem2 25506 ovolgelb 25534 ovollb2lem 25542 itg2monolem3 25807 dvferm1lem 26042 lhop1lem 26072 lhop 26075 dvcnvrelem1 26076 dvcnvrelem2 26077 pserdvlem1 26489 pserdv 26491 lgamgulmlem2 27091 lgamgulmlem3 27092 lgamucov 27099 perfectlem2 27292 bposlem2 27347 pntibndlem2 27653 pntlemb 27659 pntlem3 27671 tpr2rico 33858 omssubaddlem 34264 fibp1 34366 heicant 37615 itg2addnc 37634 rrnequiv 37795 2np3bcnp1 42101 2ap1caineq 42102 pellfundex 42842 rmspecfund 42865 acongeq 42940 jm3.1lem2 42975 oddfl 45192 infrpge 45266 xralrple2 45269 xrralrecnnle 45298 iooiinicc 45460 iooiinioc 45474 fsumnncl 45493 climinf 45527 lptre2pt 45561 ioodvbdlimc1lem2 45853 wallispilem4 45989 dirkertrigeqlem3 46021 dirkercncflem2 46025 fourierdlem63 46090 fourierdlem65 46092 fourierdlem75 46102 fourierdlem79 46106 fouriersw 46152 etransclem35 46190 qndenserrnbllem 46215 omeiunltfirp 46440 hoidmvlelem1 46516 hoidmvlelem3 46518 hoiqssbllem3 46545 iinhoiicc 46595 iunhoiioo 46597 vonioolem2 46602 vonicclem1 46604 preimaleiinlt 46642 smfmullem3 46714 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |