| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltaddrp 12990 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 + caddc 11071 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-rp 12952 |
| This theorem is referenced by: ltaddrp2d 13029 xov1plusxeqvd 13459 isumltss 15814 effsumlt 16079 tanhlt1 16128 4sqlem12 16927 vdwlem1 16952 prmgaplem7 17028 chfacfscmul0 22745 chfacfpmmul0 22749 nlmvscnlem2 24573 nlmvscnlem1 24574 iccntr 24710 icccmplem2 24712 reconnlem2 24716 opnreen 24720 lebnumii 24865 ipcnlem2 25144 ipcnlem1 25145 ivthlem2 25353 ovolgelb 25381 ovollb2lem 25389 itg2monolem3 25653 dvferm1lem 25888 lhop1lem 25918 lhop 25921 dvcnvrelem1 25922 dvcnvrelem2 25923 pserdvlem1 26337 pserdv 26339 lgamgulmlem2 26940 lgamgulmlem3 26941 lgamucov 26948 perfectlem2 27141 bposlem2 27196 pntibndlem2 27502 pntlemb 27508 pntlem3 27520 tpr2rico 33902 omssubaddlem 34290 fibp1 34392 heicant 37649 itg2addnc 37668 rrnequiv 37829 2np3bcnp1 42132 2ap1caineq 42133 pellfundex 42874 rmspecfund 42897 acongeq 42972 jm3.1lem2 43007 oddfl 45276 infrpge 45347 xralrple2 45350 xrralrecnnle 45379 iooiinicc 45540 iooiinioc 45554 fsumnncl 45570 climinf 45604 lptre2pt 45638 ioodvbdlimc1lem2 45930 wallispilem4 46066 dirkertrigeqlem3 46098 dirkercncflem2 46102 fourierdlem63 46167 fourierdlem65 46169 fourierdlem75 46179 fourierdlem79 46183 fouriersw 46229 etransclem35 46267 qndenserrnbllem 46292 omeiunltfirp 46517 hoidmvlelem1 46593 hoidmvlelem3 46595 hoiqssbllem3 46622 iinhoiicc 46672 iunhoiioo 46674 vonioolem2 46679 vonicclem1 46681 preimaleiinlt 46719 smfmullem3 46791 perfectALTVlem2 47723 |
| Copyright terms: Public domain | W3C validator |