| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | ltaddrp 12997 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 + caddc 11078 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-rp 12959 |
| This theorem is referenced by: ltaddrp2d 13036 xov1plusxeqvd 13466 isumltss 15821 effsumlt 16086 tanhlt1 16135 4sqlem12 16934 vdwlem1 16959 prmgaplem7 17035 chfacfscmul0 22752 chfacfpmmul0 22756 nlmvscnlem2 24580 nlmvscnlem1 24581 iccntr 24717 icccmplem2 24719 reconnlem2 24723 opnreen 24727 lebnumii 24872 ipcnlem2 25151 ipcnlem1 25152 ivthlem2 25360 ovolgelb 25388 ovollb2lem 25396 itg2monolem3 25660 dvferm1lem 25895 lhop1lem 25925 lhop 25928 dvcnvrelem1 25929 dvcnvrelem2 25930 pserdvlem1 26344 pserdv 26346 lgamgulmlem2 26947 lgamgulmlem3 26948 lgamucov 26955 perfectlem2 27148 bposlem2 27203 pntibndlem2 27509 pntlemb 27515 pntlem3 27527 tpr2rico 33909 omssubaddlem 34297 fibp1 34399 heicant 37656 itg2addnc 37675 rrnequiv 37836 2np3bcnp1 42139 2ap1caineq 42140 pellfundex 42881 rmspecfund 42904 acongeq 42979 jm3.1lem2 43014 oddfl 45283 infrpge 45354 xralrple2 45357 xrralrecnnle 45386 iooiinicc 45547 iooiinioc 45561 fsumnncl 45577 climinf 45611 lptre2pt 45645 ioodvbdlimc1lem2 45937 wallispilem4 46073 dirkertrigeqlem3 46105 dirkercncflem2 46109 fourierdlem63 46174 fourierdlem65 46176 fourierdlem75 46186 fourierdlem79 46190 fouriersw 46236 etransclem35 46274 qndenserrnbllem 46299 omeiunltfirp 46524 hoidmvlelem1 46600 hoidmvlelem3 46602 hoiqssbllem3 46629 iinhoiicc 46679 iunhoiioo 46681 vonioolem2 46686 vonicclem1 46688 preimaleiinlt 46726 smfmullem3 46798 perfectALTVlem2 47727 |
| Copyright terms: Public domain | W3C validator |