MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem2 Structured version   Visualization version   GIF version

Theorem itgmulc2lem2 25741
Description: Lemma for itgmulc2 25742: real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1 (𝜑𝐶 ∈ ℂ)
itgmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2.4 (𝜑𝐶 ∈ ℝ)
itgmulc2.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
itgmulc2lem2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2lem2
StepHypRef Expression
1 itgmulc2.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
21adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
3 max0sub 13163 . . . . . 6 (𝐶 ∈ ℝ → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
54oveq1d 7405 . . . 4 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = (𝐶 · 𝐵))
6 0re 11183 . . . . . . . 8 0 ∈ ℝ
7 ifcl 4537 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
81, 6, 7sylancl 586 . . . . . . 7 (𝜑 → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
98recnd 11209 . . . . . 6 (𝜑 → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
109adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
111renegcld 11612 . . . . . . . 8 (𝜑 → -𝐶 ∈ ℝ)
12 ifcl 4537 . . . . . . . 8 ((-𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
1311, 6, 12sylancl 586 . . . . . . 7 (𝜑 → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
1413recnd 11209 . . . . . 6 (𝜑 → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ)
1514adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ)
16 itgmulc2.5 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1716recnd 11209 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
1810, 15, 17subdird 11642 . . . 4 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)))
195, 18eqtr3d 2767 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)))
2019itgeq2dv 25690 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) d𝑥)
218adantr 480 . . . 4 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
2221, 16remulcld 11211 . . 3 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) ∈ ℝ)
23 itgmulc2.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
24 itgmulc2.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
259, 23, 24iblmulc2 25739 . . 3 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) ∈ 𝐿1)
2613adantr 480 . . . 4 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
2726, 16remulcld 11211 . . 3 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) ∈ ℝ)
2814, 23, 24iblmulc2 25739 . . 3 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) ∈ 𝐿1)
2922, 25, 27, 28itgsub 25734 . 2 (𝜑 → ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) d𝑥 = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥))
30 ifcl 4537 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
3116, 6, 30sylancl 586 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
3221, 31remulcld 11211 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ ℝ)
3316iblre 25702 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
3424, 33mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1))
3534simpld 494 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1)
369, 31, 35iblmulc2 25739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ 𝐿1)
3716renegcld 11612 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
38 ifcl 4537 . . . . . . . 8 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
3937, 6, 38sylancl 586 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
4021, 39remulcld 11211 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ ℝ)
4134simprd 495 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)
429, 39, 41iblmulc2 25739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ 𝐿1)
4332, 36, 40, 42itgsub 25734 . . . . 5 (𝜑 → ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥 = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
44 max0sub 13163 . . . . . . . . 9 (𝐵 ∈ ℝ → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
4516, 44syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
4645oveq2d 7406 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵))
4731recnd 11209 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ)
4839recnd 11209 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ)
4910, 47, 48subdid 11641 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
5046, 49eqtr3d 2767 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
5150itgeq2dv 25690 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥)
5216, 24itgreval 25705 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
5352oveq2d 7406 . . . . . 6 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) = (if(0 ≤ 𝐶, 𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
5431, 35itgcl 25692 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ)
5539, 41itgcl 25692 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ)
569, 54, 55subdid 11641 . . . . . 6 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
57 max1 13152 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
586, 1, 57sylancr 587 . . . . . . . 8 (𝜑 → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
59 max1 13152 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
606, 16, 59sylancr 587 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
619, 31, 35, 8, 31, 58, 60itgmulc2lem1 25740 . . . . . . 7 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥)
62 max1 13152 . . . . . . . . 9 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
636, 37, 62sylancr 587 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
649, 39, 41, 8, 39, 58, 63itgmulc2lem1 25740 . . . . . . 7 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)
6561, 64oveq12d 7408 . . . . . 6 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
6653, 56, 653eqtrd 2769 . . . . 5 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
6743, 51, 663eqtr4d 2775 . . . 4 (𝜑 → ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 = (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥))
6826, 31remulcld 11211 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ ℝ)
6914, 31, 35iblmulc2 25739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ 𝐿1)
7026, 39remulcld 11211 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ ℝ)
7114, 39, 41iblmulc2 25739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ 𝐿1)
7268, 69, 70, 71itgsub 25734 . . . . 5 (𝜑 → ∫𝐴((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥 = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
7345oveq2d 7406 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))
7415, 47, 48subdid 11641 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
7573, 74eqtr3d 2767 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) = ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
7675itgeq2dv 25690 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥)
7752oveq2d 7406 . . . . . 6 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥) = (if(0 ≤ -𝐶, -𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
7814, 54, 55subdid 11641 . . . . . 6 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = ((if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
79 max1 13152 . . . . . . . . 9 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
806, 11, 79sylancr 587 . . . . . . . 8 (𝜑 → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
8114, 31, 35, 13, 31, 80, 60itgmulc2lem1 25740 . . . . . . 7 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥)
8214, 39, 41, 13, 39, 80, 63itgmulc2lem1 25740 . . . . . . 7 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)
8381, 82oveq12d 7408 . . . . . 6 (𝜑 → ((if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
8477, 78, 833eqtrd 2769 . . . . 5 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥) = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
8572, 76, 843eqtr4d 2775 . . . 4 (𝜑 → ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥 = (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥))
8667, 85oveq12d 7408 . . 3 (𝜑 → (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥)))
8723, 24itgcl 25692 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
889, 14, 87subdird 11642 . . 3 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · ∫𝐴𝐵 d𝑥) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥)))
891, 3syl 17 . . . 4 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
9089oveq1d 7405 . . 3 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · ∫𝐴𝐵 d𝑥) = (𝐶 · ∫𝐴𝐵 d𝑥))
9186, 88, 903eqtr2d 2771 . 2 (𝜑 → (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥) = (𝐶 · ∫𝐴𝐵 d𝑥))
9220, 29, 913eqtrrd 2770 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491   class class class wbr 5110  cmpt 5191  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080  cle 11216  cmin 11412  -cneg 11413  𝐿1cibl 25525  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578
This theorem is referenced by:  itgmulc2  25742
  Copyright terms: Public domain W3C validator