MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgaddlem2 Structured version   Visualization version   GIF version

Theorem itgaddlem2 25211
Description: Lemma for itgadd 25212. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgadd.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgadd.6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
itgaddlem2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddlem2
StepHypRef Expression
1 itgadd.5 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 max0sub 13124 . . . . . . . . . 10 (𝐵 ∈ ℝ → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
31, 2syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
4 itgadd.6 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
5 max0sub 13124 . . . . . . . . . 10 (𝐶 ∈ ℝ → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
64, 5syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
73, 6oveq12d 7379 . . . . . . . 8 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0))) = (𝐵 + 𝐶))
8 0re 11165 . . . . . . . . . . 11 0 ∈ ℝ
9 ifcl 4535 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
101, 8, 9sylancl 587 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
1110recnd 11191 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ)
12 ifcl 4535 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
134, 8, 12sylancl 587 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1413recnd 11191 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
151renegcld 11590 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
16 ifcl 4535 . . . . . . . . . . 11 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
1715, 8, 16sylancl 587 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
1817recnd 11191 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ)
194renegcld 11590 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
20 ifcl 4535 . . . . . . . . . . 11 ((-𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
2119, 8, 20sylancl 587 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
2221recnd 11191 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ)
2311, 14, 18, 22addsub4d 11567 . . . . . . . 8 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) = ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0))))
241, 4readdcld 11192 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
25 max0sub 13124 . . . . . . . . 9 ((𝐵 + 𝐶) ∈ ℝ → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶))
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶))
277, 23, 263eqtr4rd 2784 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))
2824renegcld 11590 . . . . . . . . . 10 ((𝜑𝑥𝐴) → -(𝐵 + 𝐶) ∈ ℝ)
29 ifcl 4535 . . . . . . . . . 10 ((-(𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ)
3028, 8, 29sylancl 587 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ)
3130recnd 11191 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℂ)
3211, 14addcld 11182 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℂ)
33 ifcl 4535 . . . . . . . . . 10 (((𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ)
3424, 8, 33sylancl 587 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ)
3534recnd 11191 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℂ)
3618, 22addcld 11182 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℂ)
3731, 32, 35, 36addsubeq4d 11571 . . . . . . 7 ((𝜑𝑥𝐴) → ((if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ↔ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))))
3827, 37mpbird 257 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))
3938itgeq2dv 25169 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥)
40 itgadd.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
41 itgadd.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
42 itgadd.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐶𝑉)
43 itgadd.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
4440, 41, 42, 43ibladd 25208 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
4524iblre 25181 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈ 𝐿1)))
4644, 45mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈ 𝐿1))
4746simprd 497 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈ 𝐿1)
4810, 13readdcld 11192 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
491iblre 25181 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
5041, 49mpbid 231 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1))
5150simpld 496 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1)
524iblre 25181 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈ 𝐿1)))
5343, 52mpbid 231 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈ 𝐿1))
5453simpld 496 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1)
5510, 51, 13, 54ibladd 25208 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ 𝐿1)
56 max1 13113 . . . . . . 7 ((0 ∈ ℝ ∧ -(𝐵 + 𝐶) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0))
578, 28, 56sylancr 588 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0))
58 max1 13113 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
598, 1, 58sylancr 588 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
60 max1 13113 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
618, 4, 60sylancr 588 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
6210, 13, 59, 61addge0d 11739 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
6330, 47, 48, 55, 30, 48, 57, 62itgaddlem1 25210 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥))
6446simpld 496 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1)
6517, 21readdcld 11192 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℝ)
6650simprd 497 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)
6753simprd 497 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈ 𝐿1)
6817, 66, 21, 67ibladd 25208 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ∈ 𝐿1)
69 max1 13113 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0))
708, 24, 69sylancr 588 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0))
71 max1 13113 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
728, 15, 71sylancr 588 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
73 max1 13113 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
748, 19, 73sylancr 588 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
7517, 21, 72, 74addge0d 11739 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))
7634, 64, 65, 68, 34, 65, 70, 75itgaddlem1 25210 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))
7739, 63, 763eqtr3d 2781 . . . 4 (𝜑 → (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))
7830, 47itgcl 25171 . . . . 5 (𝜑 → ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 ∈ ℂ)
7910, 51, 13, 54, 10, 13, 59, 61itgaddlem1 25210 . . . . . 6 (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥))
8010, 51itgcl 25171 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ)
8113, 54itgcl 25171 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 ∈ ℂ)
8280, 81addcld 11182 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) ∈ ℂ)
8379, 82eqeltrd 2834 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 ∈ ℂ)
8434, 64itgcl 25171 . . . . 5 (𝜑 → ∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 ∈ ℂ)
8517, 66, 21, 67, 17, 21, 72, 74itgaddlem1 25210 . . . . . 6 (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))
8617, 66itgcl 25171 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ)
8721, 67itgcl 25171 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥 ∈ ℂ)
8886, 87addcld 11182 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥) ∈ ℂ)
8985, 88eqeltrd 2834 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 ∈ ℂ)
9078, 83, 84, 89addsubeq4d 11571 . . . 4 (𝜑 → ((∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) ↔ (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)))
9177, 90mpbid 231 . . 3 (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))
9279, 85oveq12d 7379 . . 3 (𝜑 → (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9380, 81, 86, 87addsub4d 11567 . . 3 (𝜑 → ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9491, 92, 933eqtrd 2777 . 2 (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9524, 44itgreval 25184 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥))
961, 41itgreval 25184 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
974, 43itgreval 25184 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))
9896, 97oveq12d 7379 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9994, 95, 983eqtr4d 2783 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4490   class class class wbr 5109  cmpt 5192  (class class class)co 7361  cc 11057  cr 11058  0cc0 11059   + caddc 11062  cle 11198  cmin 11393  -cneg 11394  𝐿1cibl 25004  citg 25005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cc 10379  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137  ax-addf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-disj 5075  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-ofr 7622  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-oadd 8420  df-omul 8421  df-er 8654  df-map 8773  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fi 9355  df-sup 9386  df-inf 9387  df-oi 9454  df-dju 9845  df-card 9883  df-acn 9886  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-xneg 13041  df-xadd 13042  df-xmul 13043  df-ioo 13277  df-ioc 13278  df-ico 13279  df-icc 13280  df-fz 13434  df-fzo 13577  df-fl 13706  df-mod 13784  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-rlim 15380  df-sum 15580  df-rest 17312  df-topgen 17333  df-psmet 20811  df-xmet 20812  df-met 20813  df-bl 20814  df-mopn 20815  df-top 22266  df-topon 22283  df-bases 22319  df-cmp 22761  df-ovol 24851  df-vol 24852  df-mbf 25006  df-itg1 25007  df-itg2 25008  df-ibl 25009  df-itg 25010  df-0p 25057
This theorem is referenced by:  itgadd  25212
  Copyright terms: Public domain W3C validator