Proof of Theorem itgaddlem2
Step | Hyp | Ref
| Expression |
1 | | itgadd.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
2 | | max0sub 12930 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (if(0
≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵) |
4 | | itgadd.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
5 | | max0sub 12930 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℝ → (if(0
≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶) |
7 | 3, 6 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0))) = (𝐵 + 𝐶)) |
8 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
9 | | ifcl 4504 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
10 | 1, 8, 9 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
11 | 10 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ) |
12 | | ifcl 4504 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
13 | 4, 8, 12 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
14 | 13 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ) |
15 | 1 | renegcld 11402 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
16 | | ifcl 4504 |
. . . . . . . . . . 11
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
17 | 15, 8, 16 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
18 | 17 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ) |
19 | 4 | renegcld 11402 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℝ) |
20 | | ifcl 4504 |
. . . . . . . . . . 11
⊢ ((-𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
21 | 19, 8, 20 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
22 | 21 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ) |
23 | 11, 14, 18, 22 | addsub4d 11379 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) = ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)))) |
24 | 1, 4 | readdcld 11004 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ ℝ) |
25 | | max0sub 12930 |
. . . . . . . . 9
⊢ ((𝐵 + 𝐶) ∈ ℝ → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶)) |
26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶)) |
27 | 7, 23, 26 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) |
28 | 24 | renegcld 11402 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(𝐵 + 𝐶) ∈ ℝ) |
29 | | ifcl 4504 |
. . . . . . . . . 10
⊢ ((-(𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ -(𝐵 +
𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ) |
30 | 28, 8, 29 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ) |
31 | 30 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℂ) |
32 | 11, 14 | addcld 10994 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℂ) |
33 | | ifcl 4504 |
. . . . . . . . . 10
⊢ (((𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ) |
34 | 24, 8, 33 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ) |
35 | 34 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℂ) |
36 | 18, 22 | addcld 10994 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℂ) |
37 | 31, 32, 35, 36 | addsubeq4d 11383 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ↔ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))) |
38 | 27, 37 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))) |
39 | 38 | itgeq2dv 24946 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥) |
40 | | itgadd.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
41 | | itgadd.2 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
42 | | itgadd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
43 | | itgadd.4 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
44 | 40, 41, 42, 43 | ibladd 24985 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈
𝐿1) |
45 | 24 | iblre 24958 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈
𝐿1))) |
46 | 44, 45 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈
𝐿1)) |
47 | 46 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈
𝐿1) |
48 | 10, 13 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ) |
49 | 1 | iblre 24958 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1))) |
50 | 41, 49 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1)) |
51 | 50 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈
𝐿1) |
52 | 4 | iblre 24958 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈
𝐿1))) |
53 | 43, 52 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈
𝐿1)) |
54 | 53 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈
𝐿1) |
55 | 10, 51, 13, 54 | ibladd 24985 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈
𝐿1) |
56 | | max1 12919 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ -(𝐵 +
𝐶) ∈ ℝ) → 0
≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) |
57 | 8, 28, 56 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) |
58 | | max1 12919 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)) |
59 | 8, 1, 58 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)) |
60 | | max1 12919 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
61 | 8, 4, 60 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
62 | 10, 13, 59, 61 | addge0d 11551 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
63 | 30, 47, 48, 55, 30, 48, 57, 62 | itgaddlem1 24987 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥)) |
64 | 46 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈
𝐿1) |
65 | 17, 21 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℝ) |
66 | 50 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1) |
67 | 53 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈
𝐿1) |
68 | 17, 66, 21, 67 | ibladd 24985 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ∈
𝐿1) |
69 | | max1 12919 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (𝐵 +
𝐶) ∈ ℝ) → 0
≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) |
70 | 8, 24, 69 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) |
71 | | max1 12919 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
72 | 8, 15, 71 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
73 | | max1 12919 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ -𝐶
∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0)) |
74 | 8, 19, 73 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0)) |
75 | 17, 21, 72, 74 | addge0d 11551 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) |
76 | 34, 64, 65, 68, 34, 65, 70, 75 | itgaddlem1 24987 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)) |
77 | 39, 63, 76 | 3eqtr3d 2786 |
. . . 4
⊢ (𝜑 → (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)) |
78 | 30, 47 | itgcl 24948 |
. . . . 5
⊢ (𝜑 → ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 ∈ ℂ) |
79 | 10, 51, 13, 54, 10, 13, 59, 61 | itgaddlem1 24987 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥)) |
80 | 10, 51 | itgcl 24948 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ) |
81 | 13, 54 | itgcl 24948 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 ∈ ℂ) |
82 | 80, 81 | addcld 10994 |
. . . . . 6
⊢ (𝜑 → (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) ∈ ℂ) |
83 | 79, 82 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 ∈ ℂ) |
84 | 34, 64 | itgcl 24948 |
. . . . 5
⊢ (𝜑 → ∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 ∈ ℂ) |
85 | 17, 66, 21, 67, 17, 21, 72, 74 | itgaddlem1 24987 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) |
86 | 17, 66 | itgcl 24948 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ) |
87 | 21, 67 | itgcl 24948 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥 ∈ ℂ) |
88 | 86, 87 | addcld 10994 |
. . . . . 6
⊢ (𝜑 → (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥) ∈ ℂ) |
89 | 85, 88 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 ∈ ℂ) |
90 | 78, 83, 84, 89 | addsubeq4d 11383 |
. . . 4
⊢ (𝜑 → ((∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) ↔ (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))) |
91 | 77, 90 | mpbid 231 |
. . 3
⊢ (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)) |
92 | 79, 85 | oveq12d 7293 |
. . 3
⊢ (𝜑 → (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
93 | 80, 81, 86, 87 | addsub4d 11379 |
. . 3
⊢ (𝜑 → ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
94 | 91, 92, 93 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
95 | 24, 44 | itgreval 24961 |
. 2
⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥)) |
96 | 1, 41 | itgreval 24961 |
. . 3
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) |
97 | 4, 43 | itgreval 24961 |
. . 3
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) |
98 | 96, 97 | oveq12d 7293 |
. 2
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))) |
99 | 94, 95, 98 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥)) |