MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgaddlem2 Structured version   Visualization version   GIF version

Theorem itgaddlem2 24988
Description: Lemma for itgadd 24989. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgadd.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgadd.6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
itgaddlem2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddlem2
StepHypRef Expression
1 itgadd.5 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 max0sub 12930 . . . . . . . . . 10 (𝐵 ∈ ℝ → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
31, 2syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
4 itgadd.6 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
5 max0sub 12930 . . . . . . . . . 10 (𝐶 ∈ ℝ → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
64, 5syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
73, 6oveq12d 7293 . . . . . . . 8 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0))) = (𝐵 + 𝐶))
8 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
9 ifcl 4504 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
101, 8, 9sylancl 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
1110recnd 11003 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ)
12 ifcl 4504 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
134, 8, 12sylancl 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1413recnd 11003 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
151renegcld 11402 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
16 ifcl 4504 . . . . . . . . . . 11 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
1715, 8, 16sylancl 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
1817recnd 11003 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ)
194renegcld 11402 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
20 ifcl 4504 . . . . . . . . . . 11 ((-𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
2119, 8, 20sylancl 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
2221recnd 11003 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ)
2311, 14, 18, 22addsub4d 11379 . . . . . . . 8 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) = ((if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) + (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0))))
241, 4readdcld 11004 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
25 max0sub 12930 . . . . . . . . 9 ((𝐵 + 𝐶) ∈ ℝ → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶))
2624, 25syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = (𝐵 + 𝐶))
277, 23, 263eqtr4rd 2789 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))
2824renegcld 11402 . . . . . . . . . 10 ((𝜑𝑥𝐴) → -(𝐵 + 𝐶) ∈ ℝ)
29 ifcl 4504 . . . . . . . . . 10 ((-(𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ)
3028, 8, 29sylancl 586 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℝ)
3130recnd 11003 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) ∈ ℂ)
3211, 14addcld 10994 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℂ)
33 ifcl 4504 . . . . . . . . . 10 (((𝐵 + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ)
3424, 8, 33sylancl 586 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℝ)
3534recnd 11003 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) ∈ ℂ)
3618, 22addcld 10994 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℂ)
3731, 32, 35, 36addsubeq4d 11383 . . . . . . 7 ((𝜑𝑥𝐴) → ((if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ↔ (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) − if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) = ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) − (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))))
3827, 37mpbird 256 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))))
3938itgeq2dv 24946 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥)
40 itgadd.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
41 itgadd.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
42 itgadd.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐶𝑉)
43 itgadd.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
4440, 41, 42, 43ibladd 24985 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
4524iblre 24958 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈ 𝐿1)))
4644, 45mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈ 𝐿1))
4746simprd 496 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0)) ∈ 𝐿1)
4810, 13readdcld 11004 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
491iblre 24958 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
5041, 49mpbid 231 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1))
5150simpld 495 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1)
524iblre 24958 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈ 𝐿1)))
5343, 52mpbid 231 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈ 𝐿1))
5453simpld 495 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ 𝐿1)
5510, 51, 13, 54ibladd 24985 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ 𝐿1)
56 max1 12919 . . . . . . 7 ((0 ∈ ℝ ∧ -(𝐵 + 𝐶) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0))
578, 28, 56sylancr 587 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0))
58 max1 12919 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
598, 1, 58sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
60 max1 12919 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
618, 4, 60sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
6210, 13, 59, 61addge0d 11551 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
6330, 47, 48, 55, 30, 48, 57, 62itgaddlem1 24987 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) + (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥))
6446simpld 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0)) ∈ 𝐿1)
6517, 21readdcld 11004 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) ∈ ℝ)
6650simprd 496 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)
6753simprd 496 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) ∈ 𝐿1)
6817, 66, 21, 67ibladd 24985 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) ∈ 𝐿1)
69 max1 12919 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0))
708, 24, 69sylancr 587 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0))
71 max1 12919 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
728, 15, 71sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
73 max1 12919 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
748, 19, 73sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
7517, 21, 72, 74addge0d 11551 . . . . . 6 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)))
7634, 64, 65, 68, 34, 65, 70, 75itgaddlem1 24987 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) + (if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0))) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))
7739, 63, 763eqtr3d 2786 . . . 4 (𝜑 → (∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))
7830, 47itgcl 24948 . . . . 5 (𝜑 → ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 ∈ ℂ)
7910, 51, 13, 54, 10, 13, 59, 61itgaddlem1 24987 . . . . . 6 (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥))
8010, 51itgcl 24948 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ)
8113, 54itgcl 24948 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 ∈ ℂ)
8280, 81addcld 10994 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) ∈ ℂ)
8379, 82eqeltrd 2839 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 ∈ ℂ)
8434, 64itgcl 24948 . . . . 5 (𝜑 → ∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 ∈ ℂ)
8517, 66, 21, 67, 17, 21, 72, 74itgaddlem1 24987 . . . . . 6 (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 = (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))
8617, 66itgcl 24948 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ)
8721, 67itgcl 24948 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥 ∈ ℂ)
8886, 87addcld 10994 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥) ∈ ℂ)
8985, 88eqeltrd 2839 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥 ∈ ℂ)
9078, 83, 84, 89addsubeq4d 11383 . . . 4 (𝜑 → ((∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥) = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 + ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) ↔ (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥)))
9177, 90mpbid 231 . . 3 (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥))
9279, 85oveq12d 7293 . . 3 (𝜑 → (∫𝐴(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐵, -𝐵, 0) + if(0 ≤ -𝐶, -𝐶, 0)) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9380, 81, 86, 87addsub4d 11379 . . 3 (𝜑 → ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥) − (∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 + ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9491, 92, 933eqtrd 2782 . 2 (𝜑 → (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9524, 44itgreval 24961 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴if(0 ≤ (𝐵 + 𝐶), (𝐵 + 𝐶), 0) d𝑥 − ∫𝐴if(0 ≤ -(𝐵 + 𝐶), -(𝐵 + 𝐶), 0) d𝑥))
961, 41itgreval 24961 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
974, 43itgreval 24961 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥))
9896, 97oveq12d 7293 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) + (∫𝐴if(0 ≤ 𝐶, 𝐶, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐶, -𝐶, 0) d𝑥)))
9994, 95, 983eqtr4d 2788 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  cmpt 5157  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874  cle 11010  cmin 11205  -cneg 11206  𝐿1cibl 24781  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834
This theorem is referenced by:  itgadd  24989
  Copyright terms: Public domain W3C validator