Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrntotbnd Structured version   Visualization version   GIF version

Theorem rrntotbnd 37876
Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
rrntotbnd.1 𝑋 = (ℝ ↑m 𝐼)
rrntotbnd.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
rrntotbnd (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))

Proof of Theorem rrntotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 ((ℂflds ℝ) ↑s 𝐼) = ((ℂflds ℝ) ↑s 𝐼)
2 eqid 2731 . . 3 (dist‘((ℂflds ℝ) ↑s 𝐼)) = (dist‘((ℂflds ℝ) ↑s 𝐼))
3 rrntotbnd.1 . . 3 𝑋 = (ℝ ↑m 𝐼)
41, 2, 3repwsmet 37874 . 2 (𝐼 ∈ Fin → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
53rrnmet 37869 . 2 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
6 hashcl 14258 . . . 4 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
7 nn0re 12385 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → (♯‘𝐼) ∈ ℝ)
8 nn0ge0 12401 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (♯‘𝐼))
97, 8resqrtcld 15320 . . . 4 ((♯‘𝐼) ∈ ℕ0 → (√‘(♯‘𝐼)) ∈ ℝ)
106, 9syl 17 . . 3 (𝐼 ∈ Fin → (√‘(♯‘𝐼)) ∈ ℝ)
117, 8sqrtge0d 15323 . . . 4 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (√‘(♯‘𝐼)))
126, 11syl 17 . . 3 (𝐼 ∈ Fin → 0 ≤ (√‘(♯‘𝐼)))
1310, 12ge0p1rpd 12959 . 2 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ+)
14 1rp 12889 . . 3 1 ∈ ℝ+
1514a1i 11 . 2 (𝐼 ∈ Fin → 1 ∈ ℝ+)
16 metcl 24242 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
17163expb 1120 . . . 4 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
185, 17sylan 580 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
1910adantr 480 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
204adantr 480 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
21 simprl 770 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
22 simprr 772 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
23 metcl 24242 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
24 metge0 24255 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))
2523, 24jca 511 . . . . . 6 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2620, 21, 22, 25syl3anc 1373 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2726simpld 494 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
2819, 27remulcld 11137 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
29 peano2re 11281 . . . . . 6 ((√‘(♯‘𝐼)) ∈ ℝ → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3010, 29syl 17 . . . . 5 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3130adantr 480 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3231, 27remulcld 11137 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
33 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
341, 2, 3, 33rrnequiv 37875 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦) ∧ (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))))
3534simprd 495 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3619lep1d 12048 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1))
37 lemul1a 11970 . . . 4 ((((√‘(♯‘𝐼)) ∈ ℝ ∧ ((√‘(♯‘𝐼)) + 1) ∈ ℝ ∧ ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))) ∧ (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3819, 31, 26, 36, 37syl31anc 1375 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3918, 28, 32, 35, 38letrd 11265 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
4034simpld 494 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦))
4118recnd 11135 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℂ)
4241mullidd 11125 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (1 · (𝑥(ℝn𝐼)𝑦)) = (𝑥(ℝn𝐼)𝑦))
4340, 42breqtrrd 5114 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (1 · (𝑥(ℝn𝐼)𝑦)))
44 eqid 2731 . 2 ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) = ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌))
45 rrntotbnd.2 . 2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
46 ax-resscn 11058 . . 3 ℝ ⊆ ℂ
471, 44cnpwstotbnd 37837 . . 3 ((ℝ ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
4846, 47mpan 690 . 2 (𝐼 ∈ Fin → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
494, 5, 13, 15, 39, 43, 44, 45, 48equivbnd2 37832 1 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5086   × cxp 5609  cres 5613  cfv 6476  (class class class)co 7341  m cmap 8745  Fincfn 8864  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  cle 11142  0cn0 12376  +crp 12885  chash 14232  csqrt 15135  s cress 17136  distcds 17165  s cpws 17345  Metcmet 21272  fldccnfld 21286  TotBndctotbnd 37806  Bndcbnd 37807  ncrrn 37865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-gz 16837  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-topgen 17342  df-prds 17346  df-pws 17348  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-xms 24230  df-ms 24231  df-totbnd 37808  df-bnd 37819  df-rrn 37866
This theorem is referenced by:  rrnheibor  37877
  Copyright terms: Public domain W3C validator