Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrntotbnd Structured version   Visualization version   GIF version

Theorem rrntotbnd 35731
Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
rrntotbnd.1 𝑋 = (ℝ ↑m 𝐼)
rrntotbnd.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
rrntotbnd (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))

Proof of Theorem rrntotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 ((ℂflds ℝ) ↑s 𝐼) = ((ℂflds ℝ) ↑s 𝐼)
2 eqid 2737 . . 3 (dist‘((ℂflds ℝ) ↑s 𝐼)) = (dist‘((ℂflds ℝ) ↑s 𝐼))
3 rrntotbnd.1 . . 3 𝑋 = (ℝ ↑m 𝐼)
41, 2, 3repwsmet 35729 . 2 (𝐼 ∈ Fin → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
53rrnmet 35724 . 2 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
6 hashcl 13923 . . . 4 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
7 nn0re 12099 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → (♯‘𝐼) ∈ ℝ)
8 nn0ge0 12115 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (♯‘𝐼))
97, 8resqrtcld 14981 . . . 4 ((♯‘𝐼) ∈ ℕ0 → (√‘(♯‘𝐼)) ∈ ℝ)
106, 9syl 17 . . 3 (𝐼 ∈ Fin → (√‘(♯‘𝐼)) ∈ ℝ)
117, 8sqrtge0d 14984 . . . 4 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (√‘(♯‘𝐼)))
126, 11syl 17 . . 3 (𝐼 ∈ Fin → 0 ≤ (√‘(♯‘𝐼)))
1310, 12ge0p1rpd 12658 . 2 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ+)
14 1rp 12590 . . 3 1 ∈ ℝ+
1514a1i 11 . 2 (𝐼 ∈ Fin → 1 ∈ ℝ+)
16 metcl 23230 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
17163expb 1122 . . . 4 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
185, 17sylan 583 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
1910adantr 484 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
204adantr 484 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
21 simprl 771 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
22 simprr 773 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
23 metcl 23230 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
24 metge0 23243 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))
2523, 24jca 515 . . . . . 6 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2620, 21, 22, 25syl3anc 1373 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2726simpld 498 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
2819, 27remulcld 10863 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
29 peano2re 11005 . . . . . 6 ((√‘(♯‘𝐼)) ∈ ℝ → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3010, 29syl 17 . . . . 5 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3130adantr 484 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3231, 27remulcld 10863 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
33 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
341, 2, 3, 33rrnequiv 35730 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦) ∧ (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))))
3534simprd 499 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3619lep1d 11763 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1))
37 lemul1a 11686 . . . 4 ((((√‘(♯‘𝐼)) ∈ ℝ ∧ ((√‘(♯‘𝐼)) + 1) ∈ ℝ ∧ ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))) ∧ (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3819, 31, 26, 36, 37syl31anc 1375 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3918, 28, 32, 35, 38letrd 10989 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
4034simpld 498 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦))
4118recnd 10861 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℂ)
4241mulid2d 10851 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (1 · (𝑥(ℝn𝐼)𝑦)) = (𝑥(ℝn𝐼)𝑦))
4340, 42breqtrrd 5081 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (1 · (𝑥(ℝn𝐼)𝑦)))
44 eqid 2737 . 2 ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) = ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌))
45 rrntotbnd.2 . 2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
46 ax-resscn 10786 . . 3 ℝ ⊆ ℂ
471, 44cnpwstotbnd 35692 . . 3 ((ℝ ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
4846, 47mpan 690 . 2 (𝐼 ∈ Fin → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
494, 5, 13, 15, 39, 43, 44, 45, 48equivbnd2 35687 1 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wss 3866   class class class wbr 5053   × cxp 5549  cres 5553  cfv 6380  (class class class)co 7213  m cmap 8508  Fincfn 8626  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cle 10868  0cn0 12090  +crp 12586  chash 13896  csqrt 14796  s cress 16784  distcds 16811  s cpws 16951  Metcmet 20349  fldccnfld 20363  TotBndctotbnd 35661  Bndcbnd 35662  ncrrn 35720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-ec 8393  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-gz 16483  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-topgen 16948  df-prds 16952  df-pws 16954  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-xms 23218  df-ms 23219  df-totbnd 35663  df-bnd 35674  df-rrn 35721
This theorem is referenced by:  rrnheibor  35732
  Copyright terms: Public domain W3C validator