Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrntotbnd Structured version   Visualization version   GIF version

Theorem rrntotbnd 34995
Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
rrntotbnd.1 𝑋 = (ℝ ↑m 𝐼)
rrntotbnd.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
rrntotbnd (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))

Proof of Theorem rrntotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . 3 ((ℂflds ℝ) ↑s 𝐼) = ((ℂflds ℝ) ↑s 𝐼)
2 eqid 2818 . . 3 (dist‘((ℂflds ℝ) ↑s 𝐼)) = (dist‘((ℂflds ℝ) ↑s 𝐼))
3 rrntotbnd.1 . . 3 𝑋 = (ℝ ↑m 𝐼)
41, 2, 3repwsmet 34993 . 2 (𝐼 ∈ Fin → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
53rrnmet 34988 . 2 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
6 hashcl 13705 . . . 4 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
7 nn0re 11894 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → (♯‘𝐼) ∈ ℝ)
8 nn0ge0 11910 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (♯‘𝐼))
97, 8resqrtcld 14765 . . . 4 ((♯‘𝐼) ∈ ℕ0 → (√‘(♯‘𝐼)) ∈ ℝ)
106, 9syl 17 . . 3 (𝐼 ∈ Fin → (√‘(♯‘𝐼)) ∈ ℝ)
117, 8sqrtge0d 14768 . . . 4 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (√‘(♯‘𝐼)))
126, 11syl 17 . . 3 (𝐼 ∈ Fin → 0 ≤ (√‘(♯‘𝐼)))
1310, 12ge0p1rpd 12449 . 2 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ+)
14 1rp 12381 . . 3 1 ∈ ℝ+
1514a1i 11 . 2 (𝐼 ∈ Fin → 1 ∈ ℝ+)
16 metcl 22869 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
17163expb 1112 . . . 4 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
185, 17sylan 580 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
1910adantr 481 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
204adantr 481 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
21 simprl 767 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
22 simprr 769 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
23 metcl 22869 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
24 metge0 22882 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))
2523, 24jca 512 . . . . . 6 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2620, 21, 22, 25syl3anc 1363 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2726simpld 495 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
2819, 27remulcld 10659 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
29 peano2re 10801 . . . . . 6 ((√‘(♯‘𝐼)) ∈ ℝ → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3010, 29syl 17 . . . . 5 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3130adantr 481 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3231, 27remulcld 10659 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
33 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
341, 2, 3, 33rrnequiv 34994 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦) ∧ (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))))
3534simprd 496 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3619lep1d 11559 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1))
37 lemul1a 11482 . . . 4 ((((√‘(♯‘𝐼)) ∈ ℝ ∧ ((√‘(♯‘𝐼)) + 1) ∈ ℝ ∧ ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))) ∧ (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3819, 31, 26, 36, 37syl31anc 1365 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3918, 28, 32, 35, 38letrd 10785 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
4034simpld 495 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦))
4118recnd 10657 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℂ)
4241mulid2d 10647 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (1 · (𝑥(ℝn𝐼)𝑦)) = (𝑥(ℝn𝐼)𝑦))
4340, 42breqtrrd 5085 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (1 · (𝑥(ℝn𝐼)𝑦)))
44 eqid 2818 . 2 ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) = ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌))
45 rrntotbnd.2 . 2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
46 ax-resscn 10582 . . 3 ℝ ⊆ ℂ
471, 44cnpwstotbnd 34956 . . 3 ((ℝ ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
4846, 47mpan 686 . 2 (𝐼 ∈ Fin → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
494, 5, 13, 15, 39, 43, 44, 45, 48equivbnd2 34951 1 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wss 3933   class class class wbr 5057   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664  0cn0 11885  +crp 12377  chash 13678  csqrt 14580  s cress 16472  distcds 16562  s cpws 16708  Metcmet 20459  fldccnfld 20473  TotBndctotbnd 34925  Bndcbnd 34926  ncrrn 34984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-ec 8280  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-gz 16254  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-topgen 16705  df-prds 16709  df-pws 16711  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-xms 22857  df-ms 22858  df-totbnd 34927  df-bnd 34938  df-rrn 34985
This theorem is referenced by:  rrnheibor  34996
  Copyright terms: Public domain W3C validator