MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mscl Structured version   Visualization version   GIF version

Theorem mscl 23720
Description: Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Baseβ€˜π‘€)
mscl.d 𝐷 = (distβ€˜π‘€)
Assertion
Ref Expression
mscl ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ)

Proof of Theorem mscl
StepHypRef Expression
1 ovres 7500 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴(𝐷 β†Ύ (𝑋 Γ— 𝑋))𝐡) = (𝐴𝐷𝐡))
213adant1 1129 . 2 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴(𝐷 β†Ύ (𝑋 Γ— 𝑋))𝐡) = (𝐴𝐷𝐡))
3 mscl.x . . . 4 𝑋 = (Baseβ€˜π‘€)
4 mscl.d . . . 4 𝐷 = (distβ€˜π‘€)
53, 4msmet2 23719 . . 3 (𝑀 ∈ MetSp β†’ (𝐷 β†Ύ (𝑋 Γ— 𝑋)) ∈ (Metβ€˜π‘‹))
6 metcl 23591 . . 3 (((𝐷 β†Ύ (𝑋 Γ— 𝑋)) ∈ (Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴(𝐷 β†Ύ (𝑋 Γ— 𝑋))𝐡) ∈ ℝ)
75, 6syl3an1 1162 . 2 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴(𝐷 β†Ύ (𝑋 Γ— 𝑋))𝐡) ∈ ℝ)
82, 7eqeltrrd 2838 1 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   Γ— cxp 5618   β†Ύ cres 5622  β€˜cfv 6479  (class class class)co 7337  β„cr 10971  Basecbs 17009  distcds 17068  Metcmet 20689  MetSpcms 23577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-topgen 17251  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-xms 23579  df-ms 23580
This theorem is referenced by:  ngptgp  23898  nlmvscnlem2  23955  nlmvscnlem1  23956  nghmcn  24015  ipcnlem2  24514  ipcnlem1  24515
  Copyright terms: Public domain W3C validator