![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgval | Structured version Visualization version GIF version |
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgval.b | โข ๐ต = (Baseโ๐บ) |
mulgval.p | โข + = (+gโ๐บ) |
mulgval.o | โข 0 = (0gโ๐บ) |
mulgval.i | โข ๐ผ = (invgโ๐บ) |
mulgval.t | โข ยท = (.gโ๐บ) |
mulgval.s | โข ๐ = seq1( + , (โ ร {๐})) |
Ref | Expression |
---|---|
mulgval | โข ((๐ โ โค โง ๐ โ ๐ต) โ (๐ ยท ๐) = if(๐ = 0, 0 , if(0 < ๐, (๐โ๐), (๐ผโ(๐โ-๐))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 โข ((๐ = ๐ โง ๐ฅ = ๐) โ ๐ = ๐) | |
2 | 1 | eqeq1d 2734 | . . 3 โข ((๐ = ๐ โง ๐ฅ = ๐) โ (๐ = 0 โ ๐ = 0)) |
3 | 1 | breq2d 5160 | . . . 4 โข ((๐ = ๐ โง ๐ฅ = ๐) โ (0 < ๐ โ 0 < ๐)) |
4 | simpr 485 | . . . . . . . . 9 โข ((๐ = ๐ โง ๐ฅ = ๐) โ ๐ฅ = ๐) | |
5 | 4 | sneqd 4640 | . . . . . . . 8 โข ((๐ = ๐ โง ๐ฅ = ๐) โ {๐ฅ} = {๐}) |
6 | 5 | xpeq2d 5706 | . . . . . . 7 โข ((๐ = ๐ โง ๐ฅ = ๐) โ (โ ร {๐ฅ}) = (โ ร {๐})) |
7 | 6 | seqeq3d 13973 | . . . . . 6 โข ((๐ = ๐ โง ๐ฅ = ๐) โ seq1( + , (โ ร {๐ฅ})) = seq1( + , (โ ร {๐}))) |
8 | mulgval.s | . . . . . 6 โข ๐ = seq1( + , (โ ร {๐})) | |
9 | 7, 8 | eqtr4di 2790 | . . . . 5 โข ((๐ = ๐ โง ๐ฅ = ๐) โ seq1( + , (โ ร {๐ฅ})) = ๐) |
10 | 9, 1 | fveq12d 6898 | . . . 4 โข ((๐ = ๐ โง ๐ฅ = ๐) โ (seq1( + , (โ ร {๐ฅ}))โ๐) = (๐โ๐)) |
11 | 1 | negeqd 11453 | . . . . . 6 โข ((๐ = ๐ โง ๐ฅ = ๐) โ -๐ = -๐) |
12 | 9, 11 | fveq12d 6898 | . . . . 5 โข ((๐ = ๐ โง ๐ฅ = ๐) โ (seq1( + , (โ ร {๐ฅ}))โ-๐) = (๐โ-๐)) |
13 | 12 | fveq2d 6895 | . . . 4 โข ((๐ = ๐ โง ๐ฅ = ๐) โ (๐ผโ(seq1( + , (โ ร {๐ฅ}))โ-๐)) = (๐ผโ(๐โ-๐))) |
14 | 3, 10, 13 | ifbieq12d 4556 | . . 3 โข ((๐ = ๐ โง ๐ฅ = ๐) โ if(0 < ๐, (seq1( + , (โ ร {๐ฅ}))โ๐), (๐ผโ(seq1( + , (โ ร {๐ฅ}))โ-๐))) = if(0 < ๐, (๐โ๐), (๐ผโ(๐โ-๐)))) |
15 | 2, 14 | ifbieq2d 4554 | . 2 โข ((๐ = ๐ โง ๐ฅ = ๐) โ if(๐ = 0, 0 , if(0 < ๐, (seq1( + , (โ ร {๐ฅ}))โ๐), (๐ผโ(seq1( + , (โ ร {๐ฅ}))โ-๐)))) = if(๐ = 0, 0 , if(0 < ๐, (๐โ๐), (๐ผโ(๐โ-๐))))) |
16 | mulgval.b | . . 3 โข ๐ต = (Baseโ๐บ) | |
17 | mulgval.p | . . 3 โข + = (+gโ๐บ) | |
18 | mulgval.o | . . 3 โข 0 = (0gโ๐บ) | |
19 | mulgval.i | . . 3 โข ๐ผ = (invgโ๐บ) | |
20 | mulgval.t | . . 3 โข ยท = (.gโ๐บ) | |
21 | 16, 17, 18, 19, 20 | mulgfval 18951 | . 2 โข ยท = (๐ โ โค, ๐ฅ โ ๐ต โฆ if(๐ = 0, 0 , if(0 < ๐, (seq1( + , (โ ร {๐ฅ}))โ๐), (๐ผโ(seq1( + , (โ ร {๐ฅ}))โ-๐))))) |
22 | 18 | fvexi 6905 | . . 3 โข 0 โ V |
23 | fvex 6904 | . . . 4 โข (๐โ๐) โ V | |
24 | fvex 6904 | . . . 4 โข (๐ผโ(๐โ-๐)) โ V | |
25 | 23, 24 | ifex 4578 | . . 3 โข if(0 < ๐, (๐โ๐), (๐ผโ(๐โ-๐))) โ V |
26 | 22, 25 | ifex 4578 | . 2 โข if(๐ = 0, 0 , if(0 < ๐, (๐โ๐), (๐ผโ(๐โ-๐)))) โ V |
27 | 15, 21, 26 | ovmpoa 7562 | 1 โข ((๐ โ โค โง ๐ โ ๐ต) โ (๐ ยท ๐) = if(๐ = 0, 0 , if(0 < ๐, (๐โ๐), (๐ผโ(๐โ-๐))))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 ifcif 4528 {csn 4628 class class class wbr 5148 ร cxp 5674 โcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 < clt 11247 -cneg 11444 โcn 12211 โคcz 12557 seqcseq 13965 Basecbs 17143 +gcplusg 17196 0gc0g 17384 invgcminusg 18819 .gcmg 18949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-seq 13966 df-mulg 18950 |
This theorem is referenced by: mulg0 18956 mulgnn 18957 mulgnegnn 18963 subgmulg 19019 |
Copyright terms: Public domain | W3C validator |