| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgval | Structured version Visualization version GIF version | ||
| Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgval.p | ⊢ + = (+g‘𝐺) |
| mulgval.o | ⊢ 0 = (0g‘𝐺) |
| mulgval.i | ⊢ 𝐼 = (invg‘𝐺) |
| mulgval.t | ⊢ · = (.g‘𝐺) |
| mulgval.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
| Ref | Expression |
|---|---|
| mulgval | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑛 = 𝑁) | |
| 2 | 1 | eqeq1d 2735 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0)) |
| 3 | 1 | breq2d 5105 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁)) |
| 4 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 5 | 4 | sneqd 4587 | . . . . . . . 8 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
| 6 | 5 | xpeq2d 5649 | . . . . . . 7 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋})) |
| 7 | 6 | seqeq3d 13918 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋}))) |
| 8 | mulgval.s | . . . . . 6 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
| 9 | 7, 8 | eqtr4di 2786 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆) |
| 10 | 9, 1 | fveq12d 6835 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆‘𝑁)) |
| 11 | 1 | negeqd 11361 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → -𝑛 = -𝑁) |
| 12 | 9, 11 | fveq12d 6835 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁)) |
| 13 | 12 | fveq2d 6832 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁))) |
| 14 | 3, 10, 13 | ifbieq12d 4503 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) |
| 15 | 2, 14 | ifbieq2d 4501 | . 2 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| 16 | mulgval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | mulgval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 18 | mulgval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 19 | mulgval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 20 | mulgval.t | . . 3 ⊢ · = (.g‘𝐺) | |
| 21 | 16, 17, 18, 19, 20 | mulgfval 18984 | . 2 ⊢ · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
| 22 | 18 | fvexi 6842 | . . 3 ⊢ 0 ∈ V |
| 23 | fvex 6841 | . . . 4 ⊢ (𝑆‘𝑁) ∈ V | |
| 24 | fvex 6841 | . . . 4 ⊢ (𝐼‘(𝑆‘-𝑁)) ∈ V | |
| 25 | 23, 24 | ifex 4525 | . . 3 ⊢ if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V |
| 26 | 22, 25 | ifex 4525 | . 2 ⊢ if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V |
| 27 | 15, 21, 26 | ovmpoa 7507 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ifcif 4474 {csn 4575 class class class wbr 5093 × cxp 5617 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 < clt 11153 -cneg 11352 ℕcn 12132 ℤcz 12475 seqcseq 13910 Basecbs 17122 +gcplusg 17163 0gc0g 17345 invgcminusg 18849 .gcmg 18982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-mulg 18983 |
| This theorem is referenced by: mulg0 18989 mulgnn 18990 mulgnegnn 18999 subgmulg 19055 |
| Copyright terms: Public domain | W3C validator |