MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgval Structured version   Visualization version   GIF version

Theorem mulgval 19090
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
mulgval.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgval ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))

Proof of Theorem mulgval
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
21eqeq1d 2738 . . 3 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0))
31breq2d 5154 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁))
4 simpr 484 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
54sneqd 4637 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → {𝑥} = {𝑋})
65xpeq2d 5714 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋}))
76seqeq3d 14051 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋})))
8 mulgval.s . . . . . 6 𝑆 = seq1( + , (ℕ × {𝑋}))
97, 8eqtr4di 2794 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆)
109, 1fveq12d 6912 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆𝑁))
111negeqd 11503 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → -𝑛 = -𝑁)
129, 11fveq12d 6912 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁))
1312fveq2d 6909 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁)))
143, 10, 13ifbieq12d 4553 . . 3 ((𝑛 = 𝑁𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))))
152, 14ifbieq2d 4551 . 2 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
16 mulgval.b . . 3 𝐵 = (Base‘𝐺)
17 mulgval.p . . 3 + = (+g𝐺)
18 mulgval.o . . 3 0 = (0g𝐺)
19 mulgval.i . . 3 𝐼 = (invg𝐺)
20 mulgval.t . . 3 · = (.g𝐺)
2116, 17, 18, 19, 20mulgfval 19088 . 2 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
2218fvexi 6919 . . 3 0 ∈ V
23 fvex 6918 . . . 4 (𝑆𝑁) ∈ V
24 fvex 6918 . . . 4 (𝐼‘(𝑆‘-𝑁)) ∈ V
2523, 24ifex 4575 . . 3 if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V
2622, 25ifex 4575 . 2 if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V
2715, 21, 26ovmpoa 7589 1 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4524  {csn 4625   class class class wbr 5142   × cxp 5682  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   < clt 11296  -cneg 11494  cn 12267  cz 12615  seqcseq 14043  Basecbs 17248  +gcplusg 17298  0gc0g 17485  invgcminusg 18953  .gcmg 19086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-mulg 19087
This theorem is referenced by:  mulg0  19093  mulgnn  19094  mulgnegnn  19103  subgmulg  19159
  Copyright terms: Public domain W3C validator