| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgval | Structured version Visualization version GIF version | ||
| Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgval.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgval.p | ⊢ + = (+g‘𝐺) |
| mulgval.o | ⊢ 0 = (0g‘𝐺) |
| mulgval.i | ⊢ 𝐼 = (invg‘𝐺) |
| mulgval.t | ⊢ · = (.g‘𝐺) |
| mulgval.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
| Ref | Expression |
|---|---|
| mulgval | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑛 = 𝑁) | |
| 2 | 1 | eqeq1d 2733 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0)) |
| 3 | 1 | breq2d 5103 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁)) |
| 4 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 5 | 4 | sneqd 4588 | . . . . . . . 8 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
| 6 | 5 | xpeq2d 5646 | . . . . . . 7 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋})) |
| 7 | 6 | seqeq3d 13916 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋}))) |
| 8 | mulgval.s | . . . . . 6 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆) |
| 10 | 9, 1 | fveq12d 6829 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆‘𝑁)) |
| 11 | 1 | negeqd 11354 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → -𝑛 = -𝑁) |
| 12 | 9, 11 | fveq12d 6829 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁)) |
| 13 | 12 | fveq2d 6826 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁))) |
| 14 | 3, 10, 13 | ifbieq12d 4504 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) |
| 15 | 2, 14 | ifbieq2d 4502 | . 2 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| 16 | mulgval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | mulgval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 18 | mulgval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 19 | mulgval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 20 | mulgval.t | . . 3 ⊢ · = (.g‘𝐺) | |
| 21 | 16, 17, 18, 19, 20 | mulgfval 18982 | . 2 ⊢ · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
| 22 | 18 | fvexi 6836 | . . 3 ⊢ 0 ∈ V |
| 23 | fvex 6835 | . . . 4 ⊢ (𝑆‘𝑁) ∈ V | |
| 24 | fvex 6835 | . . . 4 ⊢ (𝐼‘(𝑆‘-𝑁)) ∈ V | |
| 25 | 23, 24 | ifex 4526 | . . 3 ⊢ if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V |
| 26 | 22, 25 | ifex 4526 | . 2 ⊢ if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V |
| 27 | 15, 21, 26 | ovmpoa 7501 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4475 {csn 4576 class class class wbr 5091 × cxp 5614 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 < clt 11146 -cneg 11345 ℕcn 12125 ℤcz 12468 seqcseq 13908 Basecbs 17120 +gcplusg 17161 0gc0g 17343 invgcminusg 18847 .gcmg 18980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-mulg 18981 |
| This theorem is referenced by: mulg0 18987 mulgnn 18988 mulgnegnn 18997 subgmulg 19053 |
| Copyright terms: Public domain | W3C validator |