| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0p1nns | Structured version Visualization version GIF version | ||
| Description: One plus a non-negative surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| Ref | Expression |
|---|---|
| n0p1nns | ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7356 | . . 3 ⊢ (𝑥 = 0s → (𝑥 +s 1s ) = ( 0s +s 1s )) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 0s → ((𝑥 +s 1s ) ∈ ℕs ↔ ( 0s +s 1s ) ∈ ℕs)) |
| 3 | oveq1 7356 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 +s 1s ) ∈ ℕs ↔ (𝑦 +s 1s ) ∈ ℕs)) |
| 5 | oveq1 7356 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 +s 1s ) = ((𝑦 +s 1s ) +s 1s )) | |
| 6 | 5 | eleq1d 2813 | . 2 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 +s 1s ) ∈ ℕs ↔ ((𝑦 +s 1s ) +s 1s ) ∈ ℕs)) |
| 7 | oveq1 7356 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 +s 1s ) = (𝐴 +s 1s )) | |
| 8 | 7 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 +s 1s ) ∈ ℕs ↔ (𝐴 +s 1s ) ∈ ℕs)) |
| 9 | 1sno 27742 | . . . 4 ⊢ 1s ∈ No | |
| 10 | addslid 27882 | . . . 4 ⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ ( 0s +s 1s ) = 1s |
| 12 | 1nns 28248 | . . 3 ⊢ 1s ∈ ℕs | |
| 13 | 11, 12 | eqeltri 2824 | . 2 ⊢ ( 0s +s 1s ) ∈ ℕs |
| 14 | peano2nns 28249 | . . 3 ⊢ ((𝑦 +s 1s ) ∈ ℕs → ((𝑦 +s 1s ) +s 1s ) ∈ ℕs) | |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) ∈ ℕs → ((𝑦 +s 1s ) +s 1s ) ∈ ℕs)) |
| 16 | 2, 4, 6, 8, 13, 15 | n0sind 28232 | 1 ⊢ (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 No csur 27549 0s c0s 27737 1s c1s 27738 +s cadds 27873 ℕ0scnn0s 28213 ℕscnns 28214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27739 df-1s 27740 df-made 27759 df-old 27760 df-left 27762 df-right 27763 df-norec2 27863 df-adds 27874 df-n0s 28215 df-nns 28216 |
| This theorem is referenced by: elzn0s 28293 zs12zodd 28363 |
| Copyright terms: Public domain | W3C validator |