Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmulcld | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
Ref | Expression |
---|---|
nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | nnmulcl 11927 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7255 · cmul 10807 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-addass 10867 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: bcm1k 13957 bcp1n 13958 permnn 13968 trireciplem 15502 efaddlem 15730 eftlub 15746 eirrlem 15841 modmulconst 15925 isprm5 16340 crth 16407 phimullem 16408 pcqmul 16482 pcaddlem 16517 pcbc 16529 oddprmdvds 16532 pockthlem 16534 pockthg 16535 vdwlem3 16612 vdwlem6 16615 vdwlem9 16618 torsubg 19370 ablfacrp 19584 dgrcolem1 25339 aalioulem5 25401 aaliou3lem2 25408 log2cnv 25999 log2tlbnd 26000 log2ublem2 26002 log2ub 26004 lgamgulmlem4 26086 wilthlem2 26123 ftalem7 26133 basellem5 26139 mumul 26235 fsumfldivdiaglem 26243 dvdsmulf1o 26248 sgmmul 26254 chtublem 26264 bcmono 26330 bposlem3 26339 bposlem5 26341 gausslemma2dlem1a 26418 lgsquadlem2 26434 lgsquadlem3 26435 lgsquad2lem2 26438 2sqlem6 26476 2sqmod 26489 rplogsumlem1 26537 rplogsumlem2 26538 dchrisum0fmul 26559 vmalogdivsum2 26591 pntrsumbnd2 26620 pntpbnd1 26639 pntpbnd2 26640 ostth2lem2 26687 oddpwdc 32221 eulerpartlemgh 32245 subfaclim 33050 bcprod 33610 faclim2 33620 nnproddivdvdsd 39937 lcmineqlem14 39978 lcmineqlem15 39979 lcmineqlem16 39980 lcmineqlem19 39983 lcmineqlem20 39984 lcmineqlem22 39986 aks4d1p3 40014 nnadddir 40221 flt4lem5 40403 flt4lem5e 40409 flt4lem5f 40410 jm2.27c 40745 relexpmulnn 41206 mccllem 43028 limsup10exlem 43203 wallispilem5 43500 wallispi2lem1 43502 wallispi2 43504 stirlinglem3 43507 stirlinglem8 43512 stirlinglem15 43519 dirkertrigeqlem3 43531 hoicvrrex 43984 deccarry 44691 fmtnoprmfac2 44907 sfprmdvdsmersenne 44943 lighneallem3 44947 proththdlem 44953 fppr2odd 45071 blennnt2 45823 |
Copyright terms: Public domain | W3C validator |