Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmulcld | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
Ref | Expression |
---|---|
nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | nnmulcl 11997 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7275 · cmul 10876 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-addass 10936 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 |
This theorem is referenced by: bcm1k 14029 bcp1n 14030 permnn 14040 trireciplem 15574 efaddlem 15802 eftlub 15818 eirrlem 15913 modmulconst 15997 isprm5 16412 crth 16479 phimullem 16480 pcqmul 16554 pcaddlem 16589 pcbc 16601 oddprmdvds 16604 pockthlem 16606 pockthg 16607 vdwlem3 16684 vdwlem6 16687 vdwlem9 16690 torsubg 19455 ablfacrp 19669 dgrcolem1 25434 aalioulem5 25496 aaliou3lem2 25503 log2cnv 26094 log2tlbnd 26095 log2ublem2 26097 log2ub 26099 lgamgulmlem4 26181 wilthlem2 26218 ftalem7 26228 basellem5 26234 mumul 26330 fsumfldivdiaglem 26338 dvdsmulf1o 26343 sgmmul 26349 chtublem 26359 bcmono 26425 bposlem3 26434 bposlem5 26436 gausslemma2dlem1a 26513 lgsquadlem2 26529 lgsquadlem3 26530 lgsquad2lem2 26533 2sqlem6 26571 2sqmod 26584 rplogsumlem1 26632 rplogsumlem2 26633 dchrisum0fmul 26654 vmalogdivsum2 26686 pntrsumbnd2 26715 pntpbnd1 26734 pntpbnd2 26735 ostth2lem2 26782 oddpwdc 32321 eulerpartlemgh 32345 subfaclim 33150 bcprod 33704 faclim2 33714 nnproddivdvdsd 40009 lcmineqlem14 40050 lcmineqlem15 40051 lcmineqlem16 40052 lcmineqlem19 40055 lcmineqlem20 40056 lcmineqlem22 40058 aks4d1p3 40086 nnadddir 40300 flt4lem5 40487 flt4lem5e 40493 flt4lem5f 40494 jm2.27c 40829 relexpmulnn 41317 mccllem 43138 limsup10exlem 43313 wallispilem5 43610 wallispi2lem1 43612 wallispi2 43614 stirlinglem3 43617 stirlinglem8 43622 stirlinglem15 43629 dirkertrigeqlem3 43641 hoicvrrex 44094 deccarry 44803 fmtnoprmfac2 45019 sfprmdvdsmersenne 45055 lighneallem3 45059 proththdlem 45065 fppr2odd 45183 blennnt2 45935 |
Copyright terms: Public domain | W3C validator |