Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmulcld | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
Ref | Expression |
---|---|
nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | nnmulcl 11997 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 (class class class)co 7271 · cmul 10877 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-addass 10937 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rrecex 10944 ax-cnre 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 |
This theorem is referenced by: bcm1k 14027 bcp1n 14028 permnn 14038 trireciplem 15572 efaddlem 15800 eftlub 15816 eirrlem 15911 modmulconst 15995 isprm5 16410 crth 16477 phimullem 16478 pcqmul 16552 pcaddlem 16587 pcbc 16599 oddprmdvds 16602 pockthlem 16604 pockthg 16605 vdwlem3 16682 vdwlem6 16685 vdwlem9 16688 torsubg 19453 ablfacrp 19667 dgrcolem1 25432 aalioulem5 25494 aaliou3lem2 25501 log2cnv 26092 log2tlbnd 26093 log2ublem2 26095 log2ub 26097 lgamgulmlem4 26179 wilthlem2 26216 ftalem7 26226 basellem5 26232 mumul 26328 fsumfldivdiaglem 26336 dvdsmulf1o 26341 sgmmul 26347 chtublem 26357 bcmono 26423 bposlem3 26432 bposlem5 26434 gausslemma2dlem1a 26511 lgsquadlem2 26527 lgsquadlem3 26528 lgsquad2lem2 26531 2sqlem6 26569 2sqmod 26582 rplogsumlem1 26630 rplogsumlem2 26631 dchrisum0fmul 26652 vmalogdivsum2 26684 pntrsumbnd2 26713 pntpbnd1 26732 pntpbnd2 26733 ostth2lem2 26780 oddpwdc 32317 eulerpartlemgh 32341 subfaclim 33146 bcprod 33700 faclim2 33710 nnproddivdvdsd 40006 lcmineqlem14 40047 lcmineqlem15 40048 lcmineqlem16 40049 lcmineqlem19 40052 lcmineqlem20 40053 lcmineqlem22 40055 aks4d1p3 40083 nnadddir 40297 flt4lem5 40484 flt4lem5e 40490 flt4lem5f 40491 jm2.27c 40826 relexpmulnn 41287 mccllem 43109 limsup10exlem 43284 wallispilem5 43581 wallispi2lem1 43583 wallispi2 43585 stirlinglem3 43588 stirlinglem8 43593 stirlinglem15 43600 dirkertrigeqlem3 43612 hoicvrrex 44065 deccarry 44772 fmtnoprmfac2 44988 sfprmdvdsmersenne 45024 lighneallem3 45028 proththdlem 45034 fppr2odd 45152 blennnt2 45904 |
Copyright terms: Public domain | W3C validator |