MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0nnaddcl Structured version   Visualization version   GIF version

Theorem nn0nnaddcl 12412
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
Assertion
Ref Expression
nn0nnaddcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)

Proof of Theorem nn0nnaddcl
StepHypRef Expression
1 nncn 12133 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 nn0cn 12391 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
3 addcom 11299 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
41, 2, 3syl2an 596 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
5 nnnn0addcl 12411 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ)
64, 5eqeltrrd 2832 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
76ancoms 458 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009  cn 12125  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-nn 12126  df-n0 12382
This theorem is referenced by:  nn0p1nn  12420  nnaddm1cl  12530  numnncl  12598  modfzo0difsn  13850  faclbnd4lem1  14200  vdwlem3  16895  vdwlem5  16897  vdwlem6  16898  vdwlem9  16901  mod2xnegi  16983  tdeglem4  25992  basellem5  27022  wwlksext2clwwlk  30037  fmtnodvds  47654
  Copyright terms: Public domain W3C validator