MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0nnaddcl Structured version   Visualization version   GIF version

Theorem nn0nnaddcl 12531
Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
Assertion
Ref Expression
nn0nnaddcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)

Proof of Theorem nn0nnaddcl
StepHypRef Expression
1 nncn 12248 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 nn0cn 12510 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
3 addcom 11428 . . . 4 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
41, 2, 3syl2an 594 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) = (𝑀 + 𝑁))
5 nnnn0addcl 12530 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 + 𝑀) ∈ ℕ)
64, 5eqeltrrd 2826 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
76ancoms 457 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  (class class class)co 7415  cc 11134   + caddc 11139  cn 12240  0cn0 12500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-ltxr 11281  df-nn 12241  df-n0 12501
This theorem is referenced by:  nn0p1nn  12539  nnaddm1cl  12647  numnncl  12715  modfzo0difsn  13938  faclbnd4lem1  14282  vdwlem3  16949  vdwlem5  16951  vdwlem6  16952  vdwlem9  16955  mod2xnegi  17037  tdeglem4  26011  tdeglem4OLD  26012  basellem5  27033  wwlksext2clwwlk  29909  fmtnodvds  46946
  Copyright terms: Public domain W3C validator