MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Visualization version   GIF version

Theorem aaliou3lem8 26387
Description: Lemma for aaliou3 26393. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem aaliou3lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2rp 13039 . . . . . 6 2 ∈ ℝ+
2 rpdivcl 13060 . . . . . 6 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ+)
31, 2mpan 690 . . . . 5 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ+)
43rpred 13077 . . . 4 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ)
5 2re 12340 . . . . 5 2 ∈ ℝ
6 1lt2 12437 . . . . 5 1 < 2
7 expnbnd 14271 . . . . 5 (((2 / 𝐵) ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
85, 6, 7mp3an23 1455 . . . 4 ((2 / 𝐵) ∈ ℝ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
94, 8syl 17 . . 3 (𝐵 ∈ ℝ+ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
109adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
11 simprl 771 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ)
12 simpll 767 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ)
13 nnaddm1cl 12675 . . . 4 ((𝑎 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
1411, 12, 13syl2anc 584 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
15 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℝ+)
16 rerpdivcl 13065 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ)
175, 15, 16sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ∈ ℝ)
1811nnnn0d 12587 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ0)
19 reexpcl 14119 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑎 ∈ ℕ0) → (2↑𝑎) ∈ ℝ)
205, 18, 19sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ∈ ℝ)
2111, 12nnaddcld 12318 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℕ)
22 nnm1nn0 12567 . . . . . . . . . . . . . . . 16 ((𝑎 + 𝐴) ∈ ℕ → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
24 peano2nn0 12566 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2523, 24syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2625faccld 14323 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ)
2726nnzd 12640 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ)
2823faccld 14323 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ)
2928nnzd 12640 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ)
3012nnzd 12640 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℤ)
3129, 30zmulcld 12728 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)
3227, 31zsubcld 12727 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ)
33 rpexpcl 14121 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
341, 32, 33sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
3534rpred 13077 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ)
36 simprr 773 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) < (2↑𝑎))
3717, 20, 36ltled 11409 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑𝑎))
385a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℝ)
39 1le2 12475 . . . . . . . . . . 11 1 ≤ 2
4039a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ 2)
4111nnred 12281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℝ)
4228nnred 12281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℝ)
4318nn0ge0d 12590 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 0 ≤ 𝑎)
4428nnge1d 12314 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ (!‘((𝑎 + 𝐴) − 1)))
4541, 42, 43, 44lemulge12d 12206 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
46 facp1 14317 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4723, 46syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4847oveq1d 7446 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
4928nncnd 12282 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℂ)
5025nn0cnd 12589 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℂ)
5112nncnd 12282 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℂ)
5249, 50, 51subdid 11719 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
5311nncnd 12282 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℂ)
5421nncnd 12282 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℂ)
55 1cnd 11256 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ∈ ℂ)
5654, 55npcand 11624 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) = (𝑎 + 𝐴))
5753, 51, 56mvrraddd 11675 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((((𝑎 + 𝐴) − 1) + 1) − 𝐴) = 𝑎)
5857oveq2d 7447 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
5948, 52, 583eqtr2d 2783 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
6045, 59breqtrrd 5171 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
6111nnzd 12640 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℤ)
62 eluz 12892 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6361, 32, 62syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6460, 63mpbird 257 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎))
6538, 40, 64leexp2ad 14293 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6617, 20, 35, 37, 65letrd 11418 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
67 rpcnne0 13053 . . . . . . . . . . 11 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
681, 67mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 ∈ ℂ ∧ 2 ≠ 0))
69 expsub 14151 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ ∧ ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
7068, 27, 31, 69syl12anc 837 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
71 2cn 12341 . . . . . . . . . . . 12 2 ∈ ℂ
7271a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℂ)
7312nnnn0d 12587 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ0)
7428nnnn0d 12587 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ0)
7572, 73, 74expmuld 14189 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
7675oveq2d 7447 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
77 rpexpcl 14121 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
781, 27, 77sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
7978rpcnd 13079 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℂ)
80 rpexpcl 14121 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
811, 29, 80sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
8281, 30rpexpcld 14286 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℝ+)
8382rpcnd 13079 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℂ)
8482rpne0d 13082 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ≠ 0)
8579, 83, 84divrecd 12046 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8670, 76, 853eqtrrd 2782 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) = (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
8766, 86breqtrrd 5171 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8882rpreccld 13087 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℝ+)
8978, 88rpmulcld 13093 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9089rpred 13077 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9138, 90, 15ledivmuld 13130 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
9287, 91mpbid 232 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9315rpcnd 13079 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℂ)
9488rpcnd 13079 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℂ)
9593, 79, 94mul12d 11470 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9692, 95breqtrd 5169 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9715, 88rpmulcld 13093 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9897rpred 13077 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9938, 98, 78ledivmuld 13130 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
10096, 99mpbird 257 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
10126nnnn0d 12587 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0)
102 expneg 14110 . . . . . . 7 ((2 ∈ ℂ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10371, 101, 102sylancr 587 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
104103oveq2d 7447 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
10578rpne0d 13082 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ≠ 0)
10672, 79, 105divrecd 12046 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
107104, 106eqtr4d 2780 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10893, 83, 84divrecd 12046 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
109100, 107, 1083brtr4d 5175 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
110 fvoveq1 7454 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘(𝑥 + 1)) = (!‘(((𝑎 + 𝐴) − 1) + 1)))
111110negeqd 11502 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → -(!‘(𝑥 + 1)) = -(!‘(((𝑎 + 𝐴) − 1) + 1)))
112111oveq2d 7447 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑-(!‘(𝑥 + 1))) = (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))))
113112oveq2d 7447 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (2 · (2↑-(!‘(𝑥 + 1)))) = (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))))
114 fveq2 6906 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘𝑥) = (!‘((𝑎 + 𝐴) − 1)))
115114oveq2d 7447 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑(!‘𝑥)) = (2↑(!‘((𝑎 + 𝐴) − 1))))
116115oveq1d 7446 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2↑(!‘𝑥))↑𝐴) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
117116oveq2d 7447 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (𝐵 / ((2↑(!‘𝑥))↑𝐴)) = (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
118113, 117breq12d 5156 . . . 4 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)) ↔ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
119118rspcev 3622 . . 3 ((((𝑎 + 𝐴) − 1) ∈ ℕ ∧ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12014, 109, 119syl2anc 584 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12110, 120rexlimddv 3161 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  cexp 14102  !cfa 14312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313
This theorem is referenced by:  aaliou3lem9  26392
  Copyright terms: Public domain W3C validator