MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Visualization version   GIF version

Theorem aaliou3lem8 25210
Description: Lemma for aaliou3 25216. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem aaliou3lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2rp 12574 . . . . . 6 2 ∈ ℝ+
2 rpdivcl 12594 . . . . . 6 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ+)
31, 2mpan 690 . . . . 5 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ+)
43rpred 12611 . . . 4 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ)
5 2re 11887 . . . . 5 2 ∈ ℝ
6 1lt2 11984 . . . . 5 1 < 2
7 expnbnd 13782 . . . . 5 (((2 / 𝐵) ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
85, 6, 7mp3an23 1455 . . . 4 ((2 / 𝐵) ∈ ℝ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
94, 8syl 17 . . 3 (𝐵 ∈ ℝ+ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
109adantl 485 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
11 simprl 771 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ)
12 simpll 767 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ)
13 nnaddm1cl 12217 . . . 4 ((𝑎 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
1411, 12, 13syl2anc 587 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
15 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℝ+)
16 rerpdivcl 12599 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ)
175, 15, 16sylancr 590 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ∈ ℝ)
1811nnnn0d 12133 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ0)
19 reexpcl 13635 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑎 ∈ ℕ0) → (2↑𝑎) ∈ ℝ)
205, 18, 19sylancr 590 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ∈ ℝ)
2111, 12nnaddcld 11865 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℕ)
22 nnm1nn0 12114 . . . . . . . . . . . . . . . 16 ((𝑎 + 𝐴) ∈ ℕ → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
24 peano2nn0 12113 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2523, 24syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2625faccld 13833 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ)
2726nnzd 12264 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ)
2823faccld 13833 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ)
2928nnzd 12264 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ)
3012nnzd 12264 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℤ)
3129, 30zmulcld 12271 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)
3227, 31zsubcld 12270 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ)
33 rpexpcl 13637 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
341, 32, 33sylancr 590 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
3534rpred 12611 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ)
36 simprr 773 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) < (2↑𝑎))
3717, 20, 36ltled 10963 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑𝑎))
385a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℝ)
39 1le2 12022 . . . . . . . . . . 11 1 ≤ 2
4039a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ 2)
4111nnred 11828 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℝ)
4228nnred 11828 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℝ)
4318nn0ge0d 12136 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 0 ≤ 𝑎)
4428nnge1d 11861 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ (!‘((𝑎 + 𝐴) − 1)))
4541, 42, 43, 44lemulge12d 11753 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
46 facp1 13827 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4723, 46syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4847oveq1d 7217 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
4928nncnd 11829 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℂ)
5025nn0cnd 12135 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℂ)
5112nncnd 11829 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℂ)
5249, 50, 51subdid 11271 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
5311nncnd 11829 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℂ)
5421nncnd 11829 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℂ)
55 1cnd 10811 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ∈ ℂ)
5654, 55npcand 11176 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) = (𝑎 + 𝐴))
5753, 51, 56mvrraddd 11227 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((((𝑎 + 𝐴) − 1) + 1) − 𝐴) = 𝑎)
5857oveq2d 7218 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
5948, 52, 583eqtr2d 2780 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
6045, 59breqtrrd 5071 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
6111nnzd 12264 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℤ)
62 eluz 12435 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6361, 32, 62syl2anc 587 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6460, 63mpbird 260 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎))
6538, 40, 64leexp2ad 13806 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6617, 20, 35, 37, 65letrd 10972 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
67 rpcnne0 12587 . . . . . . . . . . 11 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
681, 67mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 ∈ ℂ ∧ 2 ≠ 0))
69 expsub 13666 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ ∧ ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
7068, 27, 31, 69syl12anc 837 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
71 2cn 11888 . . . . . . . . . . . 12 2 ∈ ℂ
7271a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℂ)
7312nnnn0d 12133 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ0)
7428nnnn0d 12133 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ0)
7572, 73, 74expmuld 13702 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
7675oveq2d 7218 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
77 rpexpcl 13637 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
781, 27, 77sylancr 590 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
7978rpcnd 12613 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℂ)
80 rpexpcl 13637 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
811, 29, 80sylancr 590 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
8281, 30rpexpcld 13797 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℝ+)
8382rpcnd 12613 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℂ)
8482rpne0d 12616 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ≠ 0)
8579, 83, 84divrecd 11594 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8670, 76, 853eqtrrd 2779 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) = (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
8766, 86breqtrrd 5071 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8882rpreccld 12621 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℝ+)
8978, 88rpmulcld 12627 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9089rpred 12611 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9138, 90, 15ledivmuld 12664 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
9287, 91mpbid 235 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9315rpcnd 12613 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℂ)
9488rpcnd 12613 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℂ)
9593, 79, 94mul12d 11024 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9692, 95breqtrd 5069 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9715, 88rpmulcld 12627 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9897rpred 12611 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9938, 98, 78ledivmuld 12664 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
10096, 99mpbird 260 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
10126nnnn0d 12133 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0)
102 expneg 13626 . . . . . . 7 ((2 ∈ ℂ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10371, 101, 102sylancr 590 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
104103oveq2d 7218 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
10578rpne0d 12616 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ≠ 0)
10672, 79, 105divrecd 11594 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
107104, 106eqtr4d 2777 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10893, 83, 84divrecd 11594 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
109100, 107, 1083brtr4d 5075 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
110 fvoveq1 7225 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘(𝑥 + 1)) = (!‘(((𝑎 + 𝐴) − 1) + 1)))
111110negeqd 11055 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → -(!‘(𝑥 + 1)) = -(!‘(((𝑎 + 𝐴) − 1) + 1)))
112111oveq2d 7218 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑-(!‘(𝑥 + 1))) = (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))))
113112oveq2d 7218 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (2 · (2↑-(!‘(𝑥 + 1)))) = (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))))
114 fveq2 6706 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘𝑥) = (!‘((𝑎 + 𝐴) − 1)))
115114oveq2d 7218 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑(!‘𝑥)) = (2↑(!‘((𝑎 + 𝐴) − 1))))
116115oveq1d 7217 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2↑(!‘𝑥))↑𝐴) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
117116oveq2d 7218 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (𝐵 / ((2↑(!‘𝑥))↑𝐴)) = (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
118113, 117breq12d 5056 . . . 4 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)) ↔ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
119118rspcev 3530 . . 3 ((((𝑎 + 𝐴) − 1) ∈ ℕ ∧ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12014, 109, 119syl2anc 587 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12110, 120rexlimddv 3203 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wrex 3055   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717   < clt 10850  cle 10851  cmin 11045  -cneg 11046   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cz 12159  cuz 12421  +crp 12569  cexp 13618  !cfa 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fl 13350  df-seq 13558  df-exp 13619  df-fac 13823
This theorem is referenced by:  aaliou3lem9  25215
  Copyright terms: Public domain W3C validator