MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Visualization version   GIF version

Theorem aaliou3lem8 24640
Description: Lemma for aaliou3 24646. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem aaliou3lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2rp 12212 . . . . . 6 2 ∈ ℝ+
2 rpdivcl 12234 . . . . . 6 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ+)
31, 2mpan 677 . . . . 5 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ+)
43rpred 12251 . . . 4 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ)
5 2re 11517 . . . . 5 2 ∈ ℝ
6 1lt2 11621 . . . . 5 1 < 2
7 expnbnd 13411 . . . . 5 (((2 / 𝐵) ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
85, 6, 7mp3an23 1432 . . . 4 ((2 / 𝐵) ∈ ℝ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
94, 8syl 17 . . 3 (𝐵 ∈ ℝ+ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
109adantl 474 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
11 simprl 758 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ)
12 simpll 754 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ)
13 nnaddm1cl 11855 . . . 4 ((𝑎 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
1411, 12, 13syl2anc 576 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
15 simplr 756 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℝ+)
16 rerpdivcl 12239 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ)
175, 15, 16sylancr 578 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ∈ ℝ)
1811nnnn0d 11770 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ0)
19 reexpcl 13264 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑎 ∈ ℕ0) → (2↑𝑎) ∈ ℝ)
205, 18, 19sylancr 578 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ∈ ℝ)
2111, 12nnaddcld 11495 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℕ)
22 nnm1nn0 11753 . . . . . . . . . . . . . . . 16 ((𝑎 + 𝐴) ∈ ℕ → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
24 peano2nn0 11752 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2523, 24syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2625faccld 13462 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ)
2726nnzd 11902 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ)
2823faccld 13462 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ)
2928nnzd 11902 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ)
3012nnzd 11902 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℤ)
3129, 30zmulcld 11909 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)
3227, 31zsubcld 11908 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ)
33 rpexpcl 13266 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
341, 32, 33sylancr 578 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
3534rpred 12251 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ)
36 simprr 760 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) < (2↑𝑎))
3717, 20, 36ltled 10590 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑𝑎))
385a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℝ)
39 1le2 11659 . . . . . . . . . . 11 1 ≤ 2
4039a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ 2)
4111nnred 11458 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℝ)
4228nnred 11458 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℝ)
4318nn0ge0d 11773 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 0 ≤ 𝑎)
4428nnge1d 11491 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ (!‘((𝑎 + 𝐴) − 1)))
4541, 42, 43, 44lemulge12d 11381 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
46 facp1 13456 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4723, 46syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4847oveq1d 6993 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
4928nncnd 11459 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℂ)
5025nn0cnd 11772 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℂ)
5112nncnd 11459 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℂ)
5249, 50, 51subdid 10899 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
5311nncnd 11459 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℂ)
5421nncnd 11459 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℂ)
55 1cnd 10436 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ∈ ℂ)
5654, 55npcand 10804 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) = (𝑎 + 𝐴))
5753, 51, 56mvrraddd 10855 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((((𝑎 + 𝐴) − 1) + 1) − 𝐴) = 𝑎)
5857oveq2d 6994 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
5948, 52, 583eqtr2d 2820 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
6045, 59breqtrrd 4958 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
6111nnzd 11902 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℤ)
62 eluz 12075 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6361, 32, 62syl2anc 576 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6460, 63mpbird 249 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎))
6538, 40, 64leexp2ad 13435 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6617, 20, 35, 37, 65letrd 10599 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
67 rpcnne0 12227 . . . . . . . . . . 11 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
681, 67mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 ∈ ℂ ∧ 2 ≠ 0))
69 expsub 13295 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ ∧ ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
7068, 27, 31, 69syl12anc 824 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
71 2cn 11518 . . . . . . . . . . . 12 2 ∈ ℂ
7271a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℂ)
7312nnnn0d 11770 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ0)
7428nnnn0d 11770 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ0)
7572, 73, 74expmuld 13331 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
7675oveq2d 6994 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
77 rpexpcl 13266 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
781, 27, 77sylancr 578 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
7978rpcnd 12253 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℂ)
80 rpexpcl 13266 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
811, 29, 80sylancr 578 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
8281, 30rpexpcld 13426 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℝ+)
8382rpcnd 12253 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℂ)
8482rpne0d 12256 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ≠ 0)
8579, 83, 84divrecd 11222 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8670, 76, 853eqtrrd 2819 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) = (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
8766, 86breqtrrd 4958 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8882rpreccld 12261 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℝ+)
8978, 88rpmulcld 12267 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9089rpred 12251 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9138, 90, 15ledivmuld 12304 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
9287, 91mpbid 224 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9315rpcnd 12253 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℂ)
9488rpcnd 12253 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℂ)
9593, 79, 94mul12d 10651 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9692, 95breqtrd 4956 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9715, 88rpmulcld 12267 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9897rpred 12251 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9938, 98, 78ledivmuld 12304 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
10096, 99mpbird 249 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
10126nnnn0d 11770 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0)
102 expneg 13255 . . . . . . 7 ((2 ∈ ℂ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10371, 101, 102sylancr 578 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
104103oveq2d 6994 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
10578rpne0d 12256 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ≠ 0)
10672, 79, 105divrecd 11222 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
107104, 106eqtr4d 2817 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10893, 83, 84divrecd 11222 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
109100, 107, 1083brtr4d 4962 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
110 fvoveq1 7001 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘(𝑥 + 1)) = (!‘(((𝑎 + 𝐴) − 1) + 1)))
111110negeqd 10682 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → -(!‘(𝑥 + 1)) = -(!‘(((𝑎 + 𝐴) − 1) + 1)))
112111oveq2d 6994 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑-(!‘(𝑥 + 1))) = (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))))
113112oveq2d 6994 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (2 · (2↑-(!‘(𝑥 + 1)))) = (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))))
114 fveq2 6501 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘𝑥) = (!‘((𝑎 + 𝐴) − 1)))
115114oveq2d 6994 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑(!‘𝑥)) = (2↑(!‘((𝑎 + 𝐴) − 1))))
116115oveq1d 6993 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2↑(!‘𝑥))↑𝐴) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
117116oveq2d 6994 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (𝐵 / ((2↑(!‘𝑥))↑𝐴)) = (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
118113, 117breq12d 4943 . . . 4 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)) ↔ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
119118rspcev 3535 . . 3 ((((𝑎 + 𝐴) − 1) ∈ ℕ ∧ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12014, 109, 119syl2anc 576 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12110, 120rexlimddv 3236 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  wrex 3089   class class class wbr 4930  cfv 6190  (class class class)co 6978  cc 10335  cr 10336  0cc0 10337  1c1 10338   + caddc 10340   · cmul 10342   < clt 10476  cle 10477  cmin 10672  -cneg 10673   / cdiv 11100  cn 11441  2c2 11498  0cn0 11710  cz 11796  cuz 12061  +crp 12207  cexp 13247  !cfa 13451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-sup 8703  df-inf 8704  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-fl 12980  df-seq 13188  df-exp 13248  df-fac 13452
This theorem is referenced by:  aaliou3lem9  24645
  Copyright terms: Public domain W3C validator