MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Visualization version   GIF version

Theorem aaliou3lem8 24944
Description: Lemma for aaliou3 24950. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem aaliou3lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2rp 12386 . . . . . 6 2 ∈ ℝ+
2 rpdivcl 12406 . . . . . 6 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ+)
31, 2mpan 689 . . . . 5 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ+)
43rpred 12423 . . . 4 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ)
5 2re 11703 . . . . 5 2 ∈ ℝ
6 1lt2 11800 . . . . 5 1 < 2
7 expnbnd 13593 . . . . 5 (((2 / 𝐵) ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
85, 6, 7mp3an23 1450 . . . 4 ((2 / 𝐵) ∈ ℝ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
94, 8syl 17 . . 3 (𝐵 ∈ ℝ+ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
109adantl 485 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
11 simprl 770 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ)
12 simpll 766 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ)
13 nnaddm1cl 12031 . . . 4 ((𝑎 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
1411, 12, 13syl2anc 587 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
15 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℝ+)
16 rerpdivcl 12411 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ)
175, 15, 16sylancr 590 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ∈ ℝ)
1811nnnn0d 11947 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ0)
19 reexpcl 13446 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑎 ∈ ℕ0) → (2↑𝑎) ∈ ℝ)
205, 18, 19sylancr 590 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ∈ ℝ)
2111, 12nnaddcld 11681 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℕ)
22 nnm1nn0 11930 . . . . . . . . . . . . . . . 16 ((𝑎 + 𝐴) ∈ ℕ → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
24 peano2nn0 11929 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2523, 24syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2625faccld 13644 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ)
2726nnzd 12078 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ)
2823faccld 13644 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ)
2928nnzd 12078 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ)
3012nnzd 12078 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℤ)
3129, 30zmulcld 12085 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)
3227, 31zsubcld 12084 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ)
33 rpexpcl 13448 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
341, 32, 33sylancr 590 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
3534rpred 12423 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ)
36 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) < (2↑𝑎))
3717, 20, 36ltled 10781 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑𝑎))
385a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℝ)
39 1le2 11838 . . . . . . . . . . 11 1 ≤ 2
4039a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ 2)
4111nnred 11644 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℝ)
4228nnred 11644 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℝ)
4318nn0ge0d 11950 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 0 ≤ 𝑎)
4428nnge1d 11677 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ (!‘((𝑎 + 𝐴) − 1)))
4541, 42, 43, 44lemulge12d 11571 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
46 facp1 13638 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4723, 46syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4847oveq1d 7154 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
4928nncnd 11645 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℂ)
5025nn0cnd 11949 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℂ)
5112nncnd 11645 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℂ)
5249, 50, 51subdid 11089 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
5311nncnd 11645 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℂ)
5421nncnd 11645 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℂ)
55 1cnd 10629 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ∈ ℂ)
5654, 55npcand 10994 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) = (𝑎 + 𝐴))
5753, 51, 56mvrraddd 11045 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((((𝑎 + 𝐴) − 1) + 1) − 𝐴) = 𝑎)
5857oveq2d 7155 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
5948, 52, 583eqtr2d 2842 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
6045, 59breqtrrd 5061 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
6111nnzd 12078 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℤ)
62 eluz 12249 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6361, 32, 62syl2anc 587 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6460, 63mpbird 260 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎))
6538, 40, 64leexp2ad 13617 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6617, 20, 35, 37, 65letrd 10790 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
67 rpcnne0 12399 . . . . . . . . . . 11 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
681, 67mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 ∈ ℂ ∧ 2 ≠ 0))
69 expsub 13477 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ ∧ ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
7068, 27, 31, 69syl12anc 835 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
71 2cn 11704 . . . . . . . . . . . 12 2 ∈ ℂ
7271a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℂ)
7312nnnn0d 11947 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ0)
7428nnnn0d 11947 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ0)
7572, 73, 74expmuld 13513 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
7675oveq2d 7155 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
77 rpexpcl 13448 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
781, 27, 77sylancr 590 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
7978rpcnd 12425 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℂ)
80 rpexpcl 13448 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
811, 29, 80sylancr 590 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
8281, 30rpexpcld 13608 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℝ+)
8382rpcnd 12425 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℂ)
8482rpne0d 12428 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ≠ 0)
8579, 83, 84divrecd 11412 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8670, 76, 853eqtrrd 2841 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) = (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
8766, 86breqtrrd 5061 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
8882rpreccld 12433 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℝ+)
8978, 88rpmulcld 12439 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9089rpred 12423 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9138, 90, 15ledivmuld 12476 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
9287, 91mpbid 235 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9315rpcnd 12425 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℂ)
9488rpcnd 12425 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℂ)
9593, 79, 94mul12d 10842 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9692, 95breqtrd 5059 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9715, 88rpmulcld 12439 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9897rpred 12423 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9938, 98, 78ledivmuld 12476 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
10096, 99mpbird 260 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
10126nnnn0d 11947 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0)
102 expneg 13437 . . . . . . 7 ((2 ∈ ℂ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10371, 101, 102sylancr 590 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
104103oveq2d 7155 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
10578rpne0d 12428 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ≠ 0)
10672, 79, 105divrecd 11412 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
107104, 106eqtr4d 2839 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10893, 83, 84divrecd 11412 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
109100, 107, 1083brtr4d 5065 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
110 fvoveq1 7162 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘(𝑥 + 1)) = (!‘(((𝑎 + 𝐴) − 1) + 1)))
111110negeqd 10873 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → -(!‘(𝑥 + 1)) = -(!‘(((𝑎 + 𝐴) − 1) + 1)))
112111oveq2d 7155 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑-(!‘(𝑥 + 1))) = (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))))
113112oveq2d 7155 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (2 · (2↑-(!‘(𝑥 + 1)))) = (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))))
114 fveq2 6649 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘𝑥) = (!‘((𝑎 + 𝐴) − 1)))
115114oveq2d 7155 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑(!‘𝑥)) = (2↑(!‘((𝑎 + 𝐴) − 1))))
116115oveq1d 7154 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2↑(!‘𝑥))↑𝐴) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
117116oveq2d 7155 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (𝐵 / ((2↑(!‘𝑥))↑𝐴)) = (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
118113, 117breq12d 5046 . . . 4 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)) ↔ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
119118rspcev 3574 . . 3 ((((𝑎 + 𝐴) − 1) ∈ ℕ ∧ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12014, 109, 119syl2anc 587 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12110, 120rexlimddv 3253 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wrex 3110   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863  -cneg 10864   / cdiv 11290  cn 11629  2c2 11684  0cn0 11889  cz 11973  cuz 12235  +crp 12381  cexp 13429  !cfa 13633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13161  df-seq 13369  df-exp 13430  df-fac 13634
This theorem is referenced by:  aaliou3lem9  24949
  Copyright terms: Public domain W3C validator