| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decma | Structured version Visualization version GIF version | ||
| Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decma.a | ⊢ 𝐴 ∈ ℕ0 |
| decma.b | ⊢ 𝐵 ∈ ℕ0 |
| decma.c | ⊢ 𝐶 ∈ ℕ0 |
| decma.d | ⊢ 𝐷 ∈ ℕ0 |
| decma.m | ⊢ 𝑀 = ;𝐴𝐵 |
| decma.n | ⊢ 𝑁 = ;𝐶𝐷 |
| decma.p | ⊢ 𝑃 ∈ ℕ0 |
| decma.e | ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 |
| decma.f | ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 |
| Ref | Expression |
|---|---|
| decma | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12603 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | decma.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decma.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decma.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | decma.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 6 | decma.m | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
| 7 | dfdec10 12588 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 8 | 6, 7 | eqtri 2754 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
| 9 | decma.n | . . . 4 ⊢ 𝑁 = ;𝐶𝐷 | |
| 10 | dfdec10 12588 | . . . 4 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 11 | 9, 10 | eqtri 2754 | . . 3 ⊢ 𝑁 = ((;10 · 𝐶) + 𝐷) |
| 12 | decma.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 13 | decma.e | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 | |
| 14 | decma.f | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 | |
| 15 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14 | numma 12629 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((;10 · 𝐸) + 𝐹) |
| 16 | dfdec10 12588 | . 2 ⊢ ;𝐸𝐹 = ((;10 · 𝐸) + 𝐹) | |
| 17 | 15, 16 | eqtr4i 2757 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 ℕ0cn0 12378 ;cdc 12585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-dec 12586 |
| This theorem is referenced by: decrmanc 12642 2503lem2 17046 4001lem1 17049 log2ub 26884 3exp7 42085 3lexlogpow5ineq1 42086 sqn5i 42317 |
| Copyright terms: Public domain | W3C validator |