![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decma | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals ๐ and ๐ against a fixed multiplicand ๐ (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | โข ๐ด โ โ0 |
decma.b | โข ๐ต โ โ0 |
decma.c | โข ๐ถ โ โ0 |
decma.d | โข ๐ท โ โ0 |
decma.m | โข ๐ = ;๐ด๐ต |
decma.n | โข ๐ = ;๐ถ๐ท |
decma.p | โข ๐ โ โ0 |
decma.e | โข ((๐ด ยท ๐) + ๐ถ) = ๐ธ |
decma.f | โข ((๐ต ยท ๐) + ๐ท) = ๐น |
Ref | Expression |
---|---|
decma | โข ((๐ ยท ๐) + ๐) = ;๐ธ๐น |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12691 | . . 3 โข ;10 โ โ0 | |
2 | decma.a | . . 3 โข ๐ด โ โ0 | |
3 | decma.b | . . 3 โข ๐ต โ โ0 | |
4 | decma.c | . . 3 โข ๐ถ โ โ0 | |
5 | decma.d | . . 3 โข ๐ท โ โ0 | |
6 | decma.m | . . . 4 โข ๐ = ;๐ด๐ต | |
7 | dfdec10 12676 | . . . 4 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
8 | 6, 7 | eqtri 2760 | . . 3 โข ๐ = ((;10 ยท ๐ด) + ๐ต) |
9 | decma.n | . . . 4 โข ๐ = ;๐ถ๐ท | |
10 | dfdec10 12676 | . . . 4 โข ;๐ถ๐ท = ((;10 ยท ๐ถ) + ๐ท) | |
11 | 9, 10 | eqtri 2760 | . . 3 โข ๐ = ((;10 ยท ๐ถ) + ๐ท) |
12 | decma.p | . . 3 โข ๐ โ โ0 | |
13 | decma.e | . . 3 โข ((๐ด ยท ๐) + ๐ถ) = ๐ธ | |
14 | decma.f | . . 3 โข ((๐ต ยท ๐) + ๐ท) = ๐น | |
15 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14 | numma 12717 | . 2 โข ((๐ ยท ๐) + ๐) = ((;10 ยท ๐ธ) + ๐น) |
16 | dfdec10 12676 | . 2 โข ;๐ธ๐น = ((;10 ยท ๐ธ) + ๐น) | |
17 | 15, 16 | eqtr4i 2763 | 1 โข ((๐ ยท ๐) + ๐) = ;๐ธ๐น |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 โ wcel 2106 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 ยท cmul 11111 โ0cn0 12468 ;cdc 12673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-dec 12674 |
This theorem is referenced by: decrmanc 12730 2503lem2 17067 4001lem1 17070 log2ub 26443 3exp7 40906 3lexlogpow5ineq1 40907 sqn5i 41194 |
Copyright terms: Public domain | W3C validator |