MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numadd Structured version   Visualization version   GIF version

Theorem numadd 12721
Description: Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numadd.8 (𝐴 + 𝐶) = 𝐸
numadd.9 (𝐵 + 𝐷) = 𝐹
Assertion
Ref Expression
numadd (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numadd
StepHypRef Expression
1 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
2 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
3 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
4 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
52, 3, 4numcl 12687 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2830 . . . . 5 𝑀 ∈ ℕ0
76nn0cni 12481 . . . 4 𝑀 ∈ ℂ
87mulridi 11215 . . 3 (𝑀 · 1) = 𝑀
98oveq1i 7416 . 2 ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁)
10 numma.4 . . 3 𝐶 ∈ ℕ0
11 numma.5 . . 3 𝐷 ∈ ℕ0
12 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
13 1nn0 12485 . . 3 1 ∈ ℕ0
143nn0cni 12481 . . . . . 6 𝐴 ∈ ℂ
1514mulridi 11215 . . . . 5 (𝐴 · 1) = 𝐴
1615oveq1i 7416 . . . 4 ((𝐴 · 1) + 𝐶) = (𝐴 + 𝐶)
17 numadd.8 . . . 4 (𝐴 + 𝐶) = 𝐸
1816, 17eqtri 2761 . . 3 ((𝐴 · 1) + 𝐶) = 𝐸
194nn0cni 12481 . . . . . 6 𝐵 ∈ ℂ
2019mulridi 11215 . . . . 5 (𝐵 · 1) = 𝐵
2120oveq1i 7416 . . . 4 ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷)
22 numadd.9 . . . 4 (𝐵 + 𝐷) = 𝐹
2321, 22eqtri 2761 . . 3 ((𝐵 · 1) + 𝐷) = 𝐹
242, 3, 4, 10, 11, 1, 12, 13, 18, 23numma 12718 . 2 ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
259, 24eqtr3i 2763 1 (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  (class class class)co 7406  1c1 11108   + caddc 11110   · cmul 11112  0cn0 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-ltxr 11250  df-nn 12210  df-n0 12470
This theorem is referenced by:  decadd  12728
  Copyright terms: Public domain W3C validator