Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numadd | Structured version Visualization version GIF version |
Description: Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numadd.8 | ⊢ (𝐴 + 𝐶) = 𝐸 |
numadd.9 | ⊢ (𝐵 + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
numadd | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 12432 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2836 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
7 | 6 | nn0cni 12228 | . . . 4 ⊢ 𝑀 ∈ ℂ |
8 | 7 | mulid1i 10963 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
9 | 8 | oveq1i 7278 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
13 | 1nn0 12232 | . . 3 ⊢ 1 ∈ ℕ0 | |
14 | 3 | nn0cni 12228 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
15 | 14 | mulid1i 10963 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
16 | 15 | oveq1i 7278 | . . . 4 ⊢ ((𝐴 · 1) + 𝐶) = (𝐴 + 𝐶) |
17 | numadd.8 | . . . 4 ⊢ (𝐴 + 𝐶) = 𝐸 | |
18 | 16, 17 | eqtri 2767 | . . 3 ⊢ ((𝐴 · 1) + 𝐶) = 𝐸 |
19 | 4 | nn0cni 12228 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
20 | 19 | mulid1i 10963 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
21 | 20 | oveq1i 7278 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
22 | numadd.9 | . . . 4 ⊢ (𝐵 + 𝐷) = 𝐹 | |
23 | 21, 22 | eqtri 2767 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = 𝐹 |
24 | 2, 3, 4, 10, 11, 1, 12, 13, 18, 23 | numma 12463 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
25 | 9, 24 | eqtr3i 2769 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 1c1 10856 + caddc 10858 · cmul 10860 ℕ0cn0 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-nn 11957 df-n0 12217 |
This theorem is referenced by: decadd 12473 |
Copyright terms: Public domain | W3C validator |