| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numadd | Structured version Visualization version GIF version | ||
| Description: Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numma.1 | ⊢ 𝑇 ∈ ℕ0 |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 |
| numma.3 | ⊢ 𝐵 ∈ ℕ0 |
| numma.4 | ⊢ 𝐶 ∈ ℕ0 |
| numma.5 | ⊢ 𝐷 ∈ ℕ0 |
| numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
| numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
| numadd.8 | ⊢ (𝐴 + 𝐶) = 𝐸 |
| numadd.9 | ⊢ (𝐵 + 𝐷) = 𝐹 |
| Ref | Expression |
|---|---|
| numadd | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
| 3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | 2, 3, 4 | numcl 12746 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
| 6 | 1, 5 | eqeltri 2837 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
| 7 | 6 | nn0cni 12538 | . . . 4 ⊢ 𝑀 ∈ ℂ |
| 8 | 7 | mulridi 11265 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
| 9 | 8 | oveq1i 7441 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
| 10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
| 13 | 1nn0 12542 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 14 | 3 | nn0cni 12538 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 15 | 14 | mulridi 11265 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 16 | 15 | oveq1i 7441 | . . . 4 ⊢ ((𝐴 · 1) + 𝐶) = (𝐴 + 𝐶) |
| 17 | numadd.8 | . . . 4 ⊢ (𝐴 + 𝐶) = 𝐸 | |
| 18 | 16, 17 | eqtri 2765 | . . 3 ⊢ ((𝐴 · 1) + 𝐶) = 𝐸 |
| 19 | 4 | nn0cni 12538 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 20 | 19 | mulridi 11265 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
| 21 | 20 | oveq1i 7441 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
| 22 | numadd.9 | . . . 4 ⊢ (𝐵 + 𝐷) = 𝐹 | |
| 23 | 21, 22 | eqtri 2765 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = 𝐹 |
| 24 | 2, 3, 4, 10, 11, 1, 12, 13, 18, 23 | numma 12777 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| 25 | 9, 24 | eqtr3i 2767 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7431 1c1 11156 + caddc 11158 · cmul 11160 ℕ0cn0 12526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-nn 12267 df-n0 12527 |
| This theorem is referenced by: decadd 12787 |
| Copyright terms: Public domain | W3C validator |