| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numadd | Structured version Visualization version GIF version | ||
| Description: Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numma.1 | ⊢ 𝑇 ∈ ℕ0 |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 |
| numma.3 | ⊢ 𝐵 ∈ ℕ0 |
| numma.4 | ⊢ 𝐶 ∈ ℕ0 |
| numma.5 | ⊢ 𝐷 ∈ ℕ0 |
| numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
| numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
| numadd.8 | ⊢ (𝐴 + 𝐶) = 𝐸 |
| numadd.9 | ⊢ (𝐵 + 𝐷) = 𝐹 |
| Ref | Expression |
|---|---|
| numadd | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
| 2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
| 3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | 2, 3, 4 | numcl 12607 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
| 6 | 1, 5 | eqeltri 2829 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
| 7 | 6 | nn0cni 12400 | . . . 4 ⊢ 𝑀 ∈ ℂ |
| 8 | 7 | mulridi 11123 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
| 9 | 8 | oveq1i 7362 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
| 10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
| 13 | 1nn0 12404 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 14 | 3 | nn0cni 12400 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 15 | 14 | mulridi 11123 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 16 | 15 | oveq1i 7362 | . . . 4 ⊢ ((𝐴 · 1) + 𝐶) = (𝐴 + 𝐶) |
| 17 | numadd.8 | . . . 4 ⊢ (𝐴 + 𝐶) = 𝐸 | |
| 18 | 16, 17 | eqtri 2756 | . . 3 ⊢ ((𝐴 · 1) + 𝐶) = 𝐸 |
| 19 | 4 | nn0cni 12400 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 20 | 19 | mulridi 11123 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
| 21 | 20 | oveq1i 7362 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
| 22 | numadd.9 | . . . 4 ⊢ (𝐵 + 𝐷) = 𝐹 | |
| 23 | 21, 22 | eqtri 2756 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = 𝐹 |
| 24 | 2, 3, 4, 10, 11, 1, 12, 13, 18, 23 | numma 12638 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| 25 | 9, 24 | eqtr3i 2758 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 1c1 11014 + caddc 11016 · cmul 11018 ℕ0cn0 12388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-nn 12133 df-n0 12389 |
| This theorem is referenced by: decadd 12648 |
| Copyright terms: Public domain | W3C validator |