| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recexsr | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| recexsr | ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0sr 11120 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴)) | |
| 2 | mulclsr 11098 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝑦 ∈ R) → (𝐴 ·R 𝑦) ∈ R) | |
| 3 | mulasssr 11104 | . . . . . . 7 ⊢ ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦)) | |
| 4 | 3 | eqeq1i 2740 | . . . . . 6 ⊢ (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) |
| 5 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦))) | |
| 6 | 5 | eqeq1d 2737 | . . . . . . 7 ⊢ (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)) |
| 7 | 6 | rspcev 3601 | . . . . . 6 ⊢ (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 8 | 4, 7 | sylan2b 594 | . . . . 5 ⊢ (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 9 | 2, 8 | sylan 580 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 𝑦 ∈ R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 10 | 9 | rexlimdva2 3143 | . . 3 ⊢ (𝐴 ∈ R → (∃𝑦 ∈ R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R)) |
| 11 | recexsrlem 11117 | . . 3 ⊢ (0R <R (𝐴 ·R 𝐴) → ∃𝑦 ∈ R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) | |
| 12 | 10, 11 | impel 505 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 13 | 1, 12 | syldan 591 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 class class class wbr 5119 (class class class)co 7405 Rcnr 10879 0Rc0r 10880 1Rc1r 10881 ·R cmr 10884 <R cltr 10885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ec 8721 df-qs 8725 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-rq 10931 df-ltnq 10932 df-np 10995 df-1p 10996 df-plp 10997 df-mp 10998 df-ltp 10999 df-enr 11069 df-nr 11070 df-plr 11071 df-mr 11072 df-ltr 11073 df-0r 11074 df-1r 11075 df-m1r 11076 |
| This theorem is referenced by: axrrecex 11177 |
| Copyright terms: Public domain | W3C validator |