MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsr Structured version   Visualization version   GIF version

Theorem recexsr 10131
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsr ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sqgt0sr 10130 . 2 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
2 recexsrlem 10127 . . . 4 (0R <R (𝐴 ·R 𝐴) → ∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R)
3 mulclsr 10108 . . . . . . 7 ((𝐴R𝑦R) → (𝐴 ·R 𝑦) ∈ R)
4 mulasssr 10114 . . . . . . . . 9 ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦))
54eqeq1i 2776 . . . . . . . 8 (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)
6 oveq2 6802 . . . . . . . . . 10 (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦)))
76eqeq1d 2773 . . . . . . . . 9 (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R))
87rspcev 3461 . . . . . . . 8 (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
95, 8sylan2b 575 . . . . . . 7 (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
103, 9sylan 563 . . . . . 6 (((𝐴R𝑦R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
1110exp31 406 . . . . 5 (𝐴R → (𝑦R → (((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R)))
1211rexlimdv 3178 . . . 4 (𝐴R → (∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
132, 12syl5 34 . . 3 (𝐴R → (0R <R (𝐴 ·R 𝐴) → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
1413imp 393 . 2 ((𝐴R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
151, 14syldan 573 1 ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4787  (class class class)co 6794  Rcnr 9890  0Rc0r 9891  1Rc1r 9892   ·R cmr 9895   <R cltr 9896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-omul 7719  df-er 7897  df-ec 7899  df-qs 7903  df-ni 9897  df-pli 9898  df-mi 9899  df-lti 9900  df-plpq 9933  df-mpq 9934  df-ltpq 9935  df-enq 9936  df-nq 9937  df-erq 9938  df-plq 9939  df-mq 9940  df-1nq 9941  df-rq 9942  df-ltnq 9943  df-np 10006  df-1p 10007  df-plp 10008  df-mp 10009  df-ltp 10010  df-enr 10080  df-nr 10081  df-plr 10082  df-mr 10083  df-ltr 10084  df-0r 10085  df-1r 10086  df-m1r 10087
This theorem is referenced by:  axrrecex  10187
  Copyright terms: Public domain W3C validator