| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recexsr | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| recexsr | ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0sr 11003 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴)) | |
| 2 | mulclsr 10981 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝑦 ∈ R) → (𝐴 ·R 𝑦) ∈ R) | |
| 3 | mulasssr 10987 | . . . . . . 7 ⊢ ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦)) | |
| 4 | 3 | eqeq1i 2736 | . . . . . 6 ⊢ (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) |
| 5 | oveq2 7360 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦))) | |
| 6 | 5 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)) |
| 7 | 6 | rspcev 3572 | . . . . . 6 ⊢ (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 8 | 4, 7 | sylan2b 594 | . . . . 5 ⊢ (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 9 | 2, 8 | sylan 580 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 𝑦 ∈ R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 10 | 9 | rexlimdva2 3135 | . . 3 ⊢ (𝐴 ∈ R → (∃𝑦 ∈ R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R)) |
| 11 | recexsrlem 11000 | . . 3 ⊢ (0R <R (𝐴 ·R 𝐴) → ∃𝑦 ∈ R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) | |
| 12 | 10, 11 | impel 505 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| 13 | 1, 12 | syldan 591 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 class class class wbr 5093 (class class class)co 7352 Rcnr 10762 0Rc0r 10763 1Rc1r 10764 ·R cmr 10767 <R cltr 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10769 df-pli 10770 df-mi 10771 df-lti 10772 df-plpq 10805 df-mpq 10806 df-ltpq 10807 df-enq 10808 df-nq 10809 df-erq 10810 df-plq 10811 df-mq 10812 df-1nq 10813 df-rq 10814 df-ltnq 10815 df-np 10878 df-1p 10879 df-plp 10880 df-mp 10881 df-ltp 10882 df-enr 10952 df-nr 10953 df-plr 10954 df-mr 10955 df-ltr 10956 df-0r 10957 df-1r 10958 df-m1r 10959 |
| This theorem is referenced by: axrrecex 11060 |
| Copyright terms: Public domain | W3C validator |