MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsr Structured version   Visualization version   GIF version

Theorem recexsr 10607
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsr ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sqgt0sr 10606 . 2 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
2 mulclsr 10584 . . . . 5 ((𝐴R𝑦R) → (𝐴 ·R 𝑦) ∈ R)
3 mulasssr 10590 . . . . . . 7 ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦))
43eqeq1i 2743 . . . . . 6 (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)
5 oveq2 7178 . . . . . . . 8 (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦)))
65eqeq1d 2740 . . . . . . 7 (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R))
76rspcev 3526 . . . . . 6 (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
84, 7sylan2b 597 . . . . 5 (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
92, 8sylan 583 . . . 4 (((𝐴R𝑦R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
109rexlimdva2 3197 . . 3 (𝐴R → (∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
11 recexsrlem 10603 . . 3 (0R <R (𝐴 ·R 𝐴) → ∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R)
1210, 11impel 509 . 2 ((𝐴R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
131, 12syldan 594 1 ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  wrex 3054   class class class wbr 5030  (class class class)co 7170  Rcnr 10365  0Rc0r 10366  1Rc1r 10367   ·R cmr 10370   <R cltr 10371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-omul 8136  df-er 8320  df-ec 8322  df-qs 8326  df-ni 10372  df-pli 10373  df-mi 10374  df-lti 10375  df-plpq 10408  df-mpq 10409  df-ltpq 10410  df-enq 10411  df-nq 10412  df-erq 10413  df-plq 10414  df-mq 10415  df-1nq 10416  df-rq 10417  df-ltnq 10418  df-np 10481  df-1p 10482  df-plp 10483  df-mp 10484  df-ltp 10485  df-enr 10555  df-nr 10556  df-plr 10557  df-mr 10558  df-ltr 10559  df-0r 10560  df-1r 10561  df-m1r 10562
This theorem is referenced by:  axrrecex  10663
  Copyright terms: Public domain W3C validator