MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsr Structured version   Visualization version   GIF version

Theorem recexsr 11004
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsr ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sqgt0sr 11003 . 2 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
2 mulclsr 10981 . . . . 5 ((𝐴R𝑦R) → (𝐴 ·R 𝑦) ∈ R)
3 mulasssr 10987 . . . . . . 7 ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦))
43eqeq1i 2736 . . . . . 6 (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)
5 oveq2 7360 . . . . . . . 8 (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦)))
65eqeq1d 2733 . . . . . . 7 (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R))
76rspcev 3572 . . . . . 6 (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
84, 7sylan2b 594 . . . . 5 (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
92, 8sylan 580 . . . 4 (((𝐴R𝑦R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
109rexlimdva2 3135 . . 3 (𝐴R → (∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
11 recexsrlem 11000 . . 3 (0R <R (𝐴 ·R 𝐴) → ∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R)
1210, 11impel 505 . 2 ((𝐴R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
131, 12syldan 591 1 ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5093  (class class class)co 7352  Rcnr 10762  0Rc0r 10763  1Rc1r 10764   ·R cmr 10767   <R cltr 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-ni 10769  df-pli 10770  df-mi 10771  df-lti 10772  df-plpq 10805  df-mpq 10806  df-ltpq 10807  df-enq 10808  df-nq 10809  df-erq 10810  df-plq 10811  df-mq 10812  df-1nq 10813  df-rq 10814  df-ltnq 10815  df-np 10878  df-1p 10879  df-plp 10880  df-mp 10881  df-ltp 10882  df-enr 10952  df-nr 10953  df-plr 10954  df-mr 10955  df-ltr 10956  df-0r 10957  df-1r 10958  df-m1r 10959
This theorem is referenced by:  axrrecex  11060
  Copyright terms: Public domain W3C validator