MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdomi Structured version   Visualization version   GIF version

Theorem hashdomi 14419
Description: Non-strict order relation of the function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashdomi (𝐴𝐵 → (♯‘𝐴) ≤ (♯‘𝐵))

Proof of Theorem hashdomi
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴𝐵)
2 simpr 484 . . . 4 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴 ∈ Fin)
3 reldom 8991 . . . . . 6 Rel ≼
43brrelex2i 5742 . . . . 5 (𝐴𝐵𝐵 ∈ V)
54adantr 480 . . . 4 ((𝐴𝐵𝐴 ∈ Fin) → 𝐵 ∈ V)
6 hashdom 14418 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ V) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
72, 5, 6syl2anc 584 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
81, 7mpbird 257 . 2 ((𝐴𝐵𝐴 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
9 pnfxr 11315 . . . 4 +∞ ∈ ℝ*
10 pnfge 13172 . . . 4 (+∞ ∈ ℝ* → +∞ ≤ +∞)
119, 10mp1i 13 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) → +∞ ≤ +∞)
123brrelex1i 5741 . . . 4 (𝐴𝐵𝐴 ∈ V)
13 hashinf 14374 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
1412, 13sylan 580 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
154adantr 480 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) → 𝐵 ∈ V)
16 domfi 9229 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
1716stoic1b 1773 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐵 ∈ Fin)
18 hashinf 14374 . . . 4 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1915, 17, 18syl2anc 584 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐵) = +∞)
2011, 14, 193brtr4d 5175 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
218, 20pm2.61dan 813 1 (𝐴𝐵 → (♯‘𝐴) ≤ (♯‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   class class class wbr 5143  cfv 6561  cdom 8983  Fincfn 8985  +∞cpnf 11292  *cxr 11294  cle 11296  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  hashge0  14426  o1fsum  15849  incexc2  15874  usgriedgleord  29245  uspgredgleord  29249  esumcst  34064  aks6d1c6lem5  42178  idomodle  43203
  Copyright terms: Public domain W3C validator