| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12934 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11162 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ℝ*cxr 11145 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-ss 3914 df-xr 11150 df-rp 12891 |
| This theorem is referenced by: ssblex 24343 metequiv2 24425 metss2lem 24426 methaus 24435 met1stc 24436 met2ndci 24437 metcnp 24456 metcnpi3 24461 metustexhalf 24471 blval2 24477 metuel2 24480 nmoi2 24645 metdcnlem 24752 metdscnlem 24771 metnrmlem2 24776 metnrmlem3 24777 cnheibor 24881 cnllycmp 24882 lebnumlem3 24889 nmoleub2lem 25041 nmhmcn 25047 iscfil2 25193 cfil3i 25196 iscfil3 25200 cfilfcls 25201 iscmet3lem2 25219 caubl 25235 caublcls 25236 relcmpcmet 25245 bcthlem2 25252 bcthlem4 25254 bcthlem5 25255 ellimc3 25807 ftc1a 25971 ulmdvlem1 26336 psercnlem2 26361 psercn 26363 pserdvlem2 26365 pserdv 26366 efopn 26594 logccv 26599 efrlim 26906 efrlimOLD 26907 lgamucov 26975 ftalem3 27012 logexprlim 27163 pntpbnd1a 27523 pntleme 27546 pntlem3 27547 pntleml 27549 ubthlem1 30850 ubthlem2 30851 sgnmulrp2 32819 tpr2rico 33925 xrmulc1cn 33943 omssubadd 34313 ptrecube 37670 poimirlem29 37699 heicant 37705 ftc1anclem6 37748 ftc1anclem7 37749 sstotbnd2 37824 equivtotbnd 37828 totbndbnd 37839 cntotbnd 37846 heibor1lem 37859 heiborlem3 37863 heiborlem6 37866 heiborlem8 37868 supxrge 45447 infrpge 45460 infleinflem1 45478 stoweid 46171 qndenserrnbl 46403 sge0rpcpnf 46529 sge0xaddlem1 46541 |
| Copyright terms: Public domain | W3C validator |