Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 12701 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 10956 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℝ*cxr 10939 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-xr 10944 df-rp 12660 |
This theorem is referenced by: ssblex 23489 metequiv2 23572 metss2lem 23573 methaus 23582 met1stc 23583 met2ndci 23584 metcnp 23603 metcnpi3 23608 metustexhalf 23618 blval2 23624 metuel2 23627 nmoi2 23800 metdcnlem 23905 metdscnlem 23924 metnrmlem2 23929 metnrmlem3 23930 cnheibor 24024 cnllycmp 24025 lebnumlem3 24032 nmoleub2lem 24183 nmhmcn 24189 iscfil2 24335 cfil3i 24338 iscfil3 24342 cfilfcls 24343 iscmet3lem2 24361 caubl 24377 caublcls 24378 relcmpcmet 24387 bcthlem2 24394 bcthlem4 24396 bcthlem5 24397 ellimc3 24948 ftc1a 25106 ulmdvlem1 25464 psercnlem2 25488 psercn 25490 pserdvlem2 25492 pserdv 25493 efopn 25718 logccv 25723 efrlim 26024 lgamucov 26092 ftalem3 26129 logexprlim 26278 pntpbnd1a 26638 pntleme 26661 pntlem3 26662 pntleml 26664 ubthlem1 29133 ubthlem2 29134 tpr2rico 31764 xrmulc1cn 31782 omssubadd 32167 sgnmulrp2 32410 ptrecube 35704 poimirlem29 35733 heicant 35739 ftc1anclem6 35782 ftc1anclem7 35783 sstotbnd2 35859 equivtotbnd 35863 totbndbnd 35874 cntotbnd 35881 heibor1lem 35894 heiborlem3 35898 heiborlem6 35901 heiborlem8 35903 supxrge 42767 infrpge 42780 infleinflem1 42799 stoweid 43494 qndenserrnbl 43726 sge0rpcpnf 43849 sge0xaddlem1 43861 |
Copyright terms: Public domain | W3C validator |