| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12937 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11165 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11148 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-ss 3920 df-xr 11153 df-rp 12894 |
| This theorem is referenced by: ssblex 24314 metequiv2 24396 metss2lem 24397 methaus 24406 met1stc 24407 met2ndci 24408 metcnp 24427 metcnpi3 24432 metustexhalf 24442 blval2 24448 metuel2 24451 nmoi2 24616 metdcnlem 24723 metdscnlem 24742 metnrmlem2 24747 metnrmlem3 24748 cnheibor 24852 cnllycmp 24853 lebnumlem3 24860 nmoleub2lem 25012 nmhmcn 25018 iscfil2 25164 cfil3i 25167 iscfil3 25171 cfilfcls 25172 iscmet3lem2 25190 caubl 25206 caublcls 25207 relcmpcmet 25216 bcthlem2 25223 bcthlem4 25225 bcthlem5 25226 ellimc3 25778 ftc1a 25942 ulmdvlem1 26307 psercnlem2 26332 psercn 26334 pserdvlem2 26336 pserdv 26337 efopn 26565 logccv 26570 efrlim 26877 efrlimOLD 26878 lgamucov 26946 ftalem3 26983 logexprlim 27134 pntpbnd1a 27494 pntleme 27517 pntlem3 27518 pntleml 27520 ubthlem1 30814 ubthlem2 30815 sgnmulrp2 32781 tpr2rico 33879 xrmulc1cn 33897 omssubadd 34268 ptrecube 37604 poimirlem29 37633 heicant 37639 ftc1anclem6 37682 ftc1anclem7 37683 sstotbnd2 37758 equivtotbnd 37762 totbndbnd 37773 cntotbnd 37780 heibor1lem 37793 heiborlem3 37797 heiborlem6 37800 heiborlem8 37802 supxrge 45322 infrpge 45335 infleinflem1 45353 stoweid 46048 qndenserrnbl 46280 sge0rpcpnf 46406 sge0xaddlem1 46418 |
| Copyright terms: Public domain | W3C validator |