![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13074 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 11308 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ℝ*cxr 11291 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-un 3967 df-ss 3979 df-xr 11296 df-rp 13032 |
This theorem is referenced by: ssblex 24453 metequiv2 24538 metss2lem 24539 methaus 24548 met1stc 24549 met2ndci 24550 metcnp 24569 metcnpi3 24574 metustexhalf 24584 blval2 24590 metuel2 24593 nmoi2 24766 metdcnlem 24871 metdscnlem 24890 metnrmlem2 24895 metnrmlem3 24896 cnheibor 25000 cnllycmp 25001 lebnumlem3 25008 nmoleub2lem 25160 nmhmcn 25166 iscfil2 25313 cfil3i 25316 iscfil3 25320 cfilfcls 25321 iscmet3lem2 25339 caubl 25355 caublcls 25356 relcmpcmet 25365 bcthlem2 25372 bcthlem4 25374 bcthlem5 25375 ellimc3 25928 ftc1a 26092 ulmdvlem1 26457 psercnlem2 26482 psercn 26484 pserdvlem2 26486 pserdv 26487 efopn 26714 logccv 26719 efrlim 27026 efrlimOLD 27027 lgamucov 27095 ftalem3 27132 logexprlim 27283 pntpbnd1a 27643 pntleme 27666 pntlem3 27667 pntleml 27669 ubthlem1 30898 ubthlem2 30899 tpr2rico 33872 xrmulc1cn 33890 omssubadd 34281 sgnmulrp2 34524 ptrecube 37606 poimirlem29 37635 heicant 37641 ftc1anclem6 37684 ftc1anclem7 37685 sstotbnd2 37760 equivtotbnd 37764 totbndbnd 37775 cntotbnd 37782 heibor1lem 37795 heiborlem3 37799 heiborlem6 37802 heiborlem8 37804 supxrge 45287 infrpge 45300 infleinflem1 45319 stoweid 46018 qndenserrnbl 46250 sge0rpcpnf 46376 sge0xaddlem1 46388 |
Copyright terms: Public domain | W3C validator |