| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 13002 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11231 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11214 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-ss 3934 df-xr 11219 df-rp 12959 |
| This theorem is referenced by: ssblex 24323 metequiv2 24405 metss2lem 24406 methaus 24415 met1stc 24416 met2ndci 24417 metcnp 24436 metcnpi3 24441 metustexhalf 24451 blval2 24457 metuel2 24460 nmoi2 24625 metdcnlem 24732 metdscnlem 24751 metnrmlem2 24756 metnrmlem3 24757 cnheibor 24861 cnllycmp 24862 lebnumlem3 24869 nmoleub2lem 25021 nmhmcn 25027 iscfil2 25173 cfil3i 25176 iscfil3 25180 cfilfcls 25181 iscmet3lem2 25199 caubl 25215 caublcls 25216 relcmpcmet 25225 bcthlem2 25232 bcthlem4 25234 bcthlem5 25235 ellimc3 25787 ftc1a 25951 ulmdvlem1 26316 psercnlem2 26341 psercn 26343 pserdvlem2 26345 pserdv 26346 efopn 26574 logccv 26579 efrlim 26886 efrlimOLD 26887 lgamucov 26955 ftalem3 26992 logexprlim 27143 pntpbnd1a 27503 pntleme 27526 pntlem3 27527 pntleml 27529 ubthlem1 30806 ubthlem2 30807 sgnmulrp2 32768 tpr2rico 33909 xrmulc1cn 33927 omssubadd 34298 ptrecube 37621 poimirlem29 37650 heicant 37656 ftc1anclem6 37699 ftc1anclem7 37700 sstotbnd2 37775 equivtotbnd 37779 totbndbnd 37790 cntotbnd 37797 heibor1lem 37810 heiborlem3 37814 heiborlem6 37817 heiborlem8 37819 supxrge 45341 infrpge 45354 infleinflem1 45373 stoweid 46068 qndenserrnbl 46300 sge0rpcpnf 46426 sge0xaddlem1 46438 |
| Copyright terms: Public domain | W3C validator |