| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12995 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11224 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11207 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-ss 3931 df-xr 11212 df-rp 12952 |
| This theorem is referenced by: ssblex 24316 metequiv2 24398 metss2lem 24399 methaus 24408 met1stc 24409 met2ndci 24410 metcnp 24429 metcnpi3 24434 metustexhalf 24444 blval2 24450 metuel2 24453 nmoi2 24618 metdcnlem 24725 metdscnlem 24744 metnrmlem2 24749 metnrmlem3 24750 cnheibor 24854 cnllycmp 24855 lebnumlem3 24862 nmoleub2lem 25014 nmhmcn 25020 iscfil2 25166 cfil3i 25169 iscfil3 25173 cfilfcls 25174 iscmet3lem2 25192 caubl 25208 caublcls 25209 relcmpcmet 25218 bcthlem2 25225 bcthlem4 25227 bcthlem5 25228 ellimc3 25780 ftc1a 25944 ulmdvlem1 26309 psercnlem2 26334 psercn 26336 pserdvlem2 26338 pserdv 26339 efopn 26567 logccv 26572 efrlim 26879 efrlimOLD 26880 lgamucov 26948 ftalem3 26985 logexprlim 27136 pntpbnd1a 27496 pntleme 27519 pntlem3 27520 pntleml 27522 ubthlem1 30799 ubthlem2 30800 sgnmulrp2 32761 tpr2rico 33902 xrmulc1cn 33920 omssubadd 34291 ptrecube 37614 poimirlem29 37643 heicant 37649 ftc1anclem6 37692 ftc1anclem7 37693 sstotbnd2 37768 equivtotbnd 37772 totbndbnd 37783 cntotbnd 37790 heibor1lem 37803 heiborlem3 37807 heiborlem6 37810 heiborlem8 37812 supxrge 45334 infrpge 45347 infleinflem1 45366 stoweid 46061 qndenserrnbl 46293 sge0rpcpnf 46419 sge0xaddlem1 46431 |
| Copyright terms: Public domain | W3C validator |