![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13012 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 11260 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ℝ*cxr 11243 ℝ+crp 12970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 df-xr 11248 df-rp 12971 |
This theorem is referenced by: ssblex 24255 metequiv2 24340 metss2lem 24341 methaus 24350 met1stc 24351 met2ndci 24352 metcnp 24371 metcnpi3 24376 metustexhalf 24386 blval2 24392 metuel2 24395 nmoi2 24568 metdcnlem 24673 metdscnlem 24692 metnrmlem2 24697 metnrmlem3 24698 cnheibor 24802 cnllycmp 24803 lebnumlem3 24810 nmoleub2lem 24962 nmhmcn 24968 iscfil2 25115 cfil3i 25118 iscfil3 25122 cfilfcls 25123 iscmet3lem2 25141 caubl 25157 caublcls 25158 relcmpcmet 25167 bcthlem2 25174 bcthlem4 25176 bcthlem5 25177 ellimc3 25729 ftc1a 25893 ulmdvlem1 26252 psercnlem2 26277 psercn 26279 pserdvlem2 26281 pserdv 26282 efopn 26507 logccv 26512 efrlim 26816 efrlimOLD 26817 lgamucov 26885 ftalem3 26922 logexprlim 27073 pntpbnd1a 27433 pntleme 27456 pntlem3 27457 pntleml 27459 ubthlem1 30558 ubthlem2 30559 tpr2rico 33347 xrmulc1cn 33365 omssubadd 33754 sgnmulrp2 33997 ptrecube 36944 poimirlem29 36973 heicant 36979 ftc1anclem6 37022 ftc1anclem7 37023 sstotbnd2 37098 equivtotbnd 37102 totbndbnd 37113 cntotbnd 37120 heibor1lem 37133 heiborlem3 37137 heiborlem6 37140 heiborlem8 37142 supxrge 44499 infrpge 44512 infleinflem1 44531 stoweid 45230 qndenserrnbl 45462 sge0rpcpnf 45588 sge0xaddlem1 45600 |
Copyright terms: Public domain | W3C validator |