| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12971 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11200 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11183 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-ss 3928 df-xr 11188 df-rp 12928 |
| This theorem is referenced by: ssblex 24349 metequiv2 24431 metss2lem 24432 methaus 24441 met1stc 24442 met2ndci 24443 metcnp 24462 metcnpi3 24467 metustexhalf 24477 blval2 24483 metuel2 24486 nmoi2 24651 metdcnlem 24758 metdscnlem 24777 metnrmlem2 24782 metnrmlem3 24783 cnheibor 24887 cnllycmp 24888 lebnumlem3 24895 nmoleub2lem 25047 nmhmcn 25053 iscfil2 25199 cfil3i 25202 iscfil3 25206 cfilfcls 25207 iscmet3lem2 25225 caubl 25241 caublcls 25242 relcmpcmet 25251 bcthlem2 25258 bcthlem4 25260 bcthlem5 25261 ellimc3 25813 ftc1a 25977 ulmdvlem1 26342 psercnlem2 26367 psercn 26369 pserdvlem2 26371 pserdv 26372 efopn 26600 logccv 26605 efrlim 26912 efrlimOLD 26913 lgamucov 26981 ftalem3 27018 logexprlim 27169 pntpbnd1a 27529 pntleme 27552 pntlem3 27553 pntleml 27555 ubthlem1 30849 ubthlem2 30850 sgnmulrp2 32811 tpr2rico 33895 xrmulc1cn 33913 omssubadd 34284 ptrecube 37607 poimirlem29 37636 heicant 37642 ftc1anclem6 37685 ftc1anclem7 37686 sstotbnd2 37761 equivtotbnd 37765 totbndbnd 37776 cntotbnd 37783 heibor1lem 37796 heiborlem3 37800 heiborlem6 37803 heiborlem8 37805 supxrge 45327 infrpge 45340 infleinflem1 45359 stoweid 46054 qndenserrnbl 46286 sge0rpcpnf 46412 sge0xaddlem1 46424 |
| Copyright terms: Public domain | W3C validator |