| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 13051 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11285 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ℝ*cxr 11268 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-un 3931 df-ss 3943 df-xr 11273 df-rp 13009 |
| This theorem is referenced by: ssblex 24367 metequiv2 24449 metss2lem 24450 methaus 24459 met1stc 24460 met2ndci 24461 metcnp 24480 metcnpi3 24485 metustexhalf 24495 blval2 24501 metuel2 24504 nmoi2 24669 metdcnlem 24776 metdscnlem 24795 metnrmlem2 24800 metnrmlem3 24801 cnheibor 24905 cnllycmp 24906 lebnumlem3 24913 nmoleub2lem 25065 nmhmcn 25071 iscfil2 25218 cfil3i 25221 iscfil3 25225 cfilfcls 25226 iscmet3lem2 25244 caubl 25260 caublcls 25261 relcmpcmet 25270 bcthlem2 25277 bcthlem4 25279 bcthlem5 25280 ellimc3 25832 ftc1a 25996 ulmdvlem1 26361 psercnlem2 26386 psercn 26388 pserdvlem2 26390 pserdv 26391 efopn 26619 logccv 26624 efrlim 26931 efrlimOLD 26932 lgamucov 27000 ftalem3 27037 logexprlim 27188 pntpbnd1a 27548 pntleme 27571 pntlem3 27572 pntleml 27574 ubthlem1 30851 ubthlem2 30852 sgnmulrp2 32815 tpr2rico 33943 xrmulc1cn 33961 omssubadd 34332 ptrecube 37644 poimirlem29 37673 heicant 37679 ftc1anclem6 37722 ftc1anclem7 37723 sstotbnd2 37798 equivtotbnd 37802 totbndbnd 37813 cntotbnd 37820 heibor1lem 37833 heiborlem3 37837 heiborlem6 37840 heiborlem8 37842 supxrge 45365 infrpge 45378 infleinflem1 45397 stoweid 46092 qndenserrnbl 46324 sge0rpcpnf 46450 sge0xaddlem1 46462 |
| Copyright terms: Public domain | W3C validator |