| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 12971 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11200 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℝ*cxr 11183 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-ss 3928 df-xr 11188 df-rp 12928 |
| This theorem is referenced by: ssblex 24292 metequiv2 24374 metss2lem 24375 methaus 24384 met1stc 24385 met2ndci 24386 metcnp 24405 metcnpi3 24410 metustexhalf 24420 blval2 24426 metuel2 24429 nmoi2 24594 metdcnlem 24701 metdscnlem 24720 metnrmlem2 24725 metnrmlem3 24726 cnheibor 24830 cnllycmp 24831 lebnumlem3 24838 nmoleub2lem 24990 nmhmcn 24996 iscfil2 25142 cfil3i 25145 iscfil3 25149 cfilfcls 25150 iscmet3lem2 25168 caubl 25184 caublcls 25185 relcmpcmet 25194 bcthlem2 25201 bcthlem4 25203 bcthlem5 25204 ellimc3 25756 ftc1a 25920 ulmdvlem1 26285 psercnlem2 26310 psercn 26312 pserdvlem2 26314 pserdv 26315 efopn 26543 logccv 26548 efrlim 26855 efrlimOLD 26856 lgamucov 26924 ftalem3 26961 logexprlim 27112 pntpbnd1a 27472 pntleme 27495 pntlem3 27496 pntleml 27498 ubthlem1 30772 ubthlem2 30773 sgnmulrp2 32734 tpr2rico 33875 xrmulc1cn 33893 omssubadd 34264 ptrecube 37587 poimirlem29 37616 heicant 37622 ftc1anclem6 37665 ftc1anclem7 37666 sstotbnd2 37741 equivtotbnd 37745 totbndbnd 37756 cntotbnd 37763 heibor1lem 37776 heiborlem3 37780 heiborlem6 37783 heiborlem8 37785 supxrge 45307 infrpge 45320 infleinflem1 45339 stoweid 46034 qndenserrnbl 46266 sge0rpcpnf 46392 sge0xaddlem1 46404 |
| Copyright terms: Public domain | W3C validator |