![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpxrd | Structured version Visualization version GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 13099 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 11340 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℝ*cxr 11323 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-ss 3993 df-xr 11328 df-rp 13058 |
This theorem is referenced by: ssblex 24459 metequiv2 24544 metss2lem 24545 methaus 24554 met1stc 24555 met2ndci 24556 metcnp 24575 metcnpi3 24580 metustexhalf 24590 blval2 24596 metuel2 24599 nmoi2 24772 metdcnlem 24877 metdscnlem 24896 metnrmlem2 24901 metnrmlem3 24902 cnheibor 25006 cnllycmp 25007 lebnumlem3 25014 nmoleub2lem 25166 nmhmcn 25172 iscfil2 25319 cfil3i 25322 iscfil3 25326 cfilfcls 25327 iscmet3lem2 25345 caubl 25361 caublcls 25362 relcmpcmet 25371 bcthlem2 25378 bcthlem4 25380 bcthlem5 25381 ellimc3 25934 ftc1a 26098 ulmdvlem1 26461 psercnlem2 26486 psercn 26488 pserdvlem2 26490 pserdv 26491 efopn 26718 logccv 26723 efrlim 27030 efrlimOLD 27031 lgamucov 27099 ftalem3 27136 logexprlim 27287 pntpbnd1a 27647 pntleme 27670 pntlem3 27671 pntleml 27673 ubthlem1 30902 ubthlem2 30903 tpr2rico 33858 xrmulc1cn 33876 omssubadd 34265 sgnmulrp2 34508 ptrecube 37580 poimirlem29 37609 heicant 37615 ftc1anclem6 37658 ftc1anclem7 37659 sstotbnd2 37734 equivtotbnd 37738 totbndbnd 37749 cntotbnd 37756 heibor1lem 37769 heiborlem3 37773 heiborlem6 37776 heiborlem8 37778 supxrge 45253 infrpge 45266 infleinflem1 45285 stoweid 45984 qndenserrnbl 46216 sge0rpcpnf 46342 sge0xaddlem1 46354 |
Copyright terms: Public domain | W3C validator |