MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem9 Structured version   Visualization version   GIF version

Theorem ruclem9 16256
Description: Lemma for ruc 16261. The first components of the 𝐺 sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem9.6 (𝜑𝑀 ∈ ℕ0)
ruclem9.7 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
ruclem9 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem9
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruclem9.7 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 6881 . . . . . 6 (𝑘 = 𝑀 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑀)))
32breq2d 5131 . . . . 5 (𝑘 = 𝑀 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀))))
4 2fveq3 6881 . . . . . 6 (𝑘 = 𝑀 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑀)))
54breq1d 5129 . . . . 5 (𝑘 = 𝑀 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))
63, 5anbi12d 632 . . . 4 (𝑘 = 𝑀 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀)))))
76imbi2d 340 . . 3 (𝑘 = 𝑀 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))))
8 2fveq3 6881 . . . . . 6 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
98breq2d 5131 . . . . 5 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛))))
10 2fveq3 6881 . . . . . 6 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
1110breq1d 5129 . . . . 5 (𝑘 = 𝑛 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))))
129, 11anbi12d 632 . . . 4 (𝑘 = 𝑛 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)))))
1312imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))))))
14 2fveq3 6881 . . . . . 6 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
1514breq2d 5131 . . . . 5 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
16 2fveq3 6881 . . . . . 6 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
1716breq1d 5129 . . . . 5 (𝑘 = (𝑛 + 1) → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
1815, 17anbi12d 632 . . . 4 (𝑘 = (𝑛 + 1) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀)))))
1918imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
20 2fveq3 6881 . . . . . 6 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
2120breq2d 5131 . . . . 5 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁))))
22 2fveq3 6881 . . . . . 6 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
2322breq1d 5129 . . . . 5 (𝑘 = 𝑁 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
2421, 23anbi12d 632 . . . 4 (𝑘 = 𝑁 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀)))))
2524imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))))
26 ruc.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
27 ruc.2 . . . . . . . 8 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
28 ruc.4 . . . . . . . 8 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
29 ruc.5 . . . . . . . 8 𝐺 = seq0(𝐷, 𝐶)
3026, 27, 28, 29ruclem6 16253 . . . . . . 7 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
31 ruclem9.6 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3230, 31ffvelcdmd 7075 . . . . . 6 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
33 xp1st 8020 . . . . . 6 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
3432, 33syl 17 . . . . 5 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
3534leidd 11803 . . . 4 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)))
36 xp2nd 8021 . . . . . 6 ((𝐺𝑀) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑀)) ∈ ℝ)
3732, 36syl 17 . . . . 5 (𝜑 → (2nd ‘(𝐺𝑀)) ∈ ℝ)
3837leidd 11803 . . . 4 (𝜑 → (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀)))
3935, 38jca 511 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))
4026adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶ℝ)
4127adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐺:ℕ0⟶(ℝ × ℝ))
43 eluznn0 12933 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
4431, 43sylan 580 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
4542, 44ffvelcdmd 7075 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ (ℝ × ℝ))
46 xp1st 8020 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ∈ ℝ)
48 xp2nd 8021 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4945, 48syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
50 nn0p1nn 12540 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
5144, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ ℕ)
5240, 51ffvelcdmd 7075 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
53 eqid 2735 . . . . . . . . . 10 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
54 eqid 2735 . . . . . . . . . 10 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5526, 27, 28, 29ruclem8 16255 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5644, 55syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5740, 41, 47, 49, 52, 53, 54, 56ruclem2 16250 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5857simp1d 1142 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5926, 27, 28, 29ruclem7 16254 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
6044, 59syldan 591 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
61 1st2nd2 8027 . . . . . . . . . . . 12 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
6245, 61syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
6362oveq1d 7420 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6460, 63eqtrd 2770 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6564fveq2d 6880 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
6658, 65breqtrrd 5147 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1))))
6734adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑀)) ∈ ℝ)
68 peano2nn0 12541 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
6944, 68syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ ℕ0)
7042, 69ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ))
71 xp1st 8020 . . . . . . . . 9 ((𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
73 letr 11329 . . . . . . . 8 (((1st ‘(𝐺𝑀)) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7467, 47, 72, 73syl3anc 1373 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7566, 74mpan2d 694 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7664fveq2d 6880 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
7757simp3d 1144 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛)))
7876, 77eqbrtrd 5141 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)))
79 xp2nd 8021 . . . . . . . . 9 ((𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
8070, 79syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
8137adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺𝑀)) ∈ ℝ)
82 letr 11329 . . . . . . . 8 (((2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (2nd ‘(𝐺𝑀)) ∈ ℝ) → (((2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8380, 49, 81, 82syl3anc 1373 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8478, 83mpand 695 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8575, 84anim12d 609 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀)))))
8685expcom 413 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
8786a2d 29 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)))) → (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
887, 13, 19, 25, 39, 87uzind4i 12926 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀)))))
891, 88mpcom 38 1 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  csb 3874  cun 3924  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cuz 12852  seqcseq 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020
This theorem is referenced by:  ruclem10  16257
  Copyright terms: Public domain W3C validator