MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem9 Structured version   Visualization version   GIF version

Theorem ruclem9 15875
Description: Lemma for ruc 15880. The first components of the 𝐺 sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem9.6 (𝜑𝑀 ∈ ℕ0)
ruclem9.7 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
ruclem9 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem9
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruclem9.7 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 6761 . . . . . 6 (𝑘 = 𝑀 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑀)))
32breq2d 5082 . . . . 5 (𝑘 = 𝑀 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀))))
4 2fveq3 6761 . . . . . 6 (𝑘 = 𝑀 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑀)))
54breq1d 5080 . . . . 5 (𝑘 = 𝑀 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))
63, 5anbi12d 630 . . . 4 (𝑘 = 𝑀 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀)))))
76imbi2d 340 . . 3 (𝑘 = 𝑀 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))))
8 2fveq3 6761 . . . . . 6 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
98breq2d 5082 . . . . 5 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛))))
10 2fveq3 6761 . . . . . 6 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
1110breq1d 5080 . . . . 5 (𝑘 = 𝑛 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))))
129, 11anbi12d 630 . . . 4 (𝑘 = 𝑛 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)))))
1312imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))))))
14 2fveq3 6761 . . . . . 6 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
1514breq2d 5082 . . . . 5 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
16 2fveq3 6761 . . . . . 6 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
1716breq1d 5080 . . . . 5 (𝑘 = (𝑛 + 1) → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
1815, 17anbi12d 630 . . . 4 (𝑘 = (𝑛 + 1) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀)))))
1918imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
20 2fveq3 6761 . . . . . 6 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
2120breq2d 5082 . . . . 5 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁))))
22 2fveq3 6761 . . . . . 6 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
2322breq1d 5080 . . . . 5 (𝑘 = 𝑁 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
2421, 23anbi12d 630 . . . 4 (𝑘 = 𝑁 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀)))))
2524imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))))
26 ruc.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
27 ruc.2 . . . . . . . 8 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
28 ruc.4 . . . . . . . 8 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
29 ruc.5 . . . . . . . 8 𝐺 = seq0(𝐷, 𝐶)
3026, 27, 28, 29ruclem6 15872 . . . . . . 7 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
31 ruclem9.6 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3230, 31ffvelrnd 6944 . . . . . 6 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
33 xp1st 7836 . . . . . 6 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
3432, 33syl 17 . . . . 5 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
3534leidd 11471 . . . 4 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)))
36 xp2nd 7837 . . . . . 6 ((𝐺𝑀) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑀)) ∈ ℝ)
3732, 36syl 17 . . . . 5 (𝜑 → (2nd ‘(𝐺𝑀)) ∈ ℝ)
3837leidd 11471 . . . 4 (𝜑 → (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀)))
3935, 38jca 511 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))
4026adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶ℝ)
4127adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐺:ℕ0⟶(ℝ × ℝ))
43 eluznn0 12586 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
4431, 43sylan 579 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
4542, 44ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ (ℝ × ℝ))
46 xp1st 7836 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ∈ ℝ)
48 xp2nd 7837 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4945, 48syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
50 nn0p1nn 12202 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
5144, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ ℕ)
5240, 51ffvelrnd 6944 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
53 eqid 2738 . . . . . . . . . 10 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
54 eqid 2738 . . . . . . . . . 10 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5526, 27, 28, 29ruclem8 15874 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5644, 55syldan 590 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5740, 41, 47, 49, 52, 53, 54, 56ruclem2 15869 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5857simp1d 1140 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5926, 27, 28, 29ruclem7 15873 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
6044, 59syldan 590 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
61 1st2nd2 7843 . . . . . . . . . . . 12 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
6245, 61syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
6362oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6460, 63eqtrd 2778 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6564fveq2d 6760 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
6658, 65breqtrrd 5098 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1))))
6734adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑀)) ∈ ℝ)
68 peano2nn0 12203 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
6944, 68syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ ℕ0)
7042, 69ffvelrnd 6944 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ))
71 xp1st 7836 . . . . . . . . 9 ((𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
73 letr 10999 . . . . . . . 8 (((1st ‘(𝐺𝑀)) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7467, 47, 72, 73syl3anc 1369 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7566, 74mpan2d 690 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7664fveq2d 6760 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
7757simp3d 1142 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛)))
7876, 77eqbrtrd 5092 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)))
79 xp2nd 7837 . . . . . . . . 9 ((𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
8070, 79syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
8137adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺𝑀)) ∈ ℝ)
82 letr 10999 . . . . . . . 8 (((2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (2nd ‘(𝐺𝑀)) ∈ ℝ) → (((2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8380, 49, 81, 82syl3anc 1369 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8478, 83mpand 691 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8575, 84anim12d 608 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀)))))
8685expcom 413 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
8786a2d 29 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)))) → (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
887, 13, 19, 25, 39, 87uzind4i 12579 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀)))))
891, 88mpcom 38 1 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  csb 3828  cun 3881  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cuz 12511  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650
This theorem is referenced by:  ruclem10  15876
  Copyright terms: Public domain W3C validator