Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem9 Structured version   Visualization version   GIF version

Theorem ruclem9 15590
 Description: Lemma for ruc 15595. The first components of the 𝐺 sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruclem9.6 (𝜑𝑀 ∈ ℕ0)
ruclem9.7 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
ruclem9 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem9
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruclem9.7 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 2fveq3 6655 . . . . . 6 (𝑘 = 𝑀 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑀)))
32breq2d 5043 . . . . 5 (𝑘 = 𝑀 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀))))
4 2fveq3 6655 . . . . . 6 (𝑘 = 𝑀 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑀)))
54breq1d 5041 . . . . 5 (𝑘 = 𝑀 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))
63, 5anbi12d 633 . . . 4 (𝑘 = 𝑀 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀)))))
76imbi2d 344 . . 3 (𝑘 = 𝑀 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))))
8 2fveq3 6655 . . . . . 6 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
98breq2d 5043 . . . . 5 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛))))
10 2fveq3 6655 . . . . . 6 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
1110breq1d 5041 . . . . 5 (𝑘 = 𝑛 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))))
129, 11anbi12d 633 . . . 4 (𝑘 = 𝑛 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)))))
1312imbi2d 344 . . 3 (𝑘 = 𝑛 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))))))
14 2fveq3 6655 . . . . . 6 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
1514breq2d 5043 . . . . 5 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
16 2fveq3 6655 . . . . . 6 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
1716breq1d 5041 . . . . 5 (𝑘 = (𝑛 + 1) → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
1815, 17anbi12d 633 . . . 4 (𝑘 = (𝑛 + 1) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀)))))
1918imbi2d 344 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
20 2fveq3 6655 . . . . . 6 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
2120breq2d 5043 . . . . 5 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁))))
22 2fveq3 6655 . . . . . 6 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
2322breq1d 5041 . . . . 5 (𝑘 = 𝑁 → ((2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)) ↔ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
2421, 23anbi12d 633 . . . 4 (𝑘 = 𝑁 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀))) ↔ ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀)))))
2524imbi2d 344 . . 3 (𝑘 = 𝑁 → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑘)) ∧ (2nd ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑀)))) ↔ (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))))
26 ruc.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
27 ruc.2 . . . . . . . 8 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
28 ruc.4 . . . . . . . 8 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
29 ruc.5 . . . . . . . 8 𝐺 = seq0(𝐷, 𝐶)
3026, 27, 28, 29ruclem6 15587 . . . . . . 7 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
31 ruclem9.6 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3230, 31ffvelrnd 6834 . . . . . 6 (𝜑 → (𝐺𝑀) ∈ (ℝ × ℝ))
33 xp1st 7710 . . . . . 6 ((𝐺𝑀) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑀)) ∈ ℝ)
3432, 33syl 17 . . . . 5 (𝜑 → (1st ‘(𝐺𝑀)) ∈ ℝ)
3534leidd 11202 . . . 4 (𝜑 → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)))
36 xp2nd 7711 . . . . . 6 ((𝐺𝑀) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑀)) ∈ ℝ)
3732, 36syl 17 . . . . 5 (𝜑 → (2nd ‘(𝐺𝑀)) ∈ ℝ)
3837leidd 11202 . . . 4 (𝜑 → (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀)))
3935, 38jca 515 . . 3 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑀)) ∧ (2nd ‘(𝐺𝑀)) ≤ (2nd ‘(𝐺𝑀))))
4026adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶ℝ)
4127adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4230adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝐺:ℕ0⟶(ℝ × ℝ))
43 eluznn0 12312 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
4431, 43sylan 583 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
4542, 44ffvelrnd 6834 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) ∈ (ℝ × ℝ))
46 xp1st 7710 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ∈ ℝ)
48 xp2nd 7711 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4945, 48syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
50 nn0p1nn 11931 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
5144, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ ℕ)
5240, 51ffvelrnd 6834 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
53 eqid 2798 . . . . . . . . . 10 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
54 eqid 2798 . . . . . . . . . 10 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5526, 27, 28, 29ruclem8 15589 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5644, 55syldan 594 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
5740, 41, 47, 49, 52, 53, 54, 56ruclem2 15584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5857simp1d 1139 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5926, 27, 28, 29ruclem7 15588 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
6044, 59syldan 594 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
61 1st2nd2 7717 . . . . . . . . . . . 12 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
6245, 61syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
6362oveq1d 7155 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6460, 63eqtrd 2833 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
6564fveq2d 6654 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
6658, 65breqtrrd 5059 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1))))
6734adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺𝑀)) ∈ ℝ)
68 peano2nn0 11932 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
6944, 68syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ ℕ0)
7042, 69ffvelrnd 6834 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ))
71 xp1st 7710 . . . . . . . . 9 ((𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
73 letr 10730 . . . . . . . 8 (((1st ‘(𝐺𝑀)) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ (1st ‘(𝐺‘(𝑛 + 1))) ∈ ℝ) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7467, 47, 72, 73syl3anc 1368 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7566, 74mpan2d 693 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) → (1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1)))))
7664fveq2d 6654 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
7757simp3d 1141 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛)))
7876, 77eqbrtrd 5053 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)))
79 xp2nd 7711 . . . . . . . . 9 ((𝐺‘(𝑛 + 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
8070, 79syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ)
8137adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (2nd ‘(𝐺𝑀)) ∈ ℝ)
82 letr 10730 . . . . . . . 8 (((2nd ‘(𝐺‘(𝑛 + 1))) ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (2nd ‘(𝐺𝑀)) ∈ ℝ) → (((2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8380, 49, 81, 82syl3anc 1368 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8478, 83mpand 694 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)) → (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))
8575, 84anim12d 611 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀)))))
8685expcom 417 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀))) → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
8786a2d 29 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) ≤ (2nd ‘(𝐺𝑀)))) → (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺‘(𝑛 + 1))) ∧ (2nd ‘(𝐺‘(𝑛 + 1))) ≤ (2nd ‘(𝐺𝑀))))))
887, 13, 19, 25, 39, 87uzind4i 12305 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀)))))
891, 88mpcom 38 1 (𝜑 → ((1st ‘(𝐺𝑀)) ≤ (1st ‘(𝐺𝑁)) ∧ (2nd ‘(𝐺𝑁)) ≤ (2nd ‘(𝐺𝑀))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ⦋csb 3828   ∪ cun 3879  ifcif 4425  {csn 4525  ⟨cop 4531   class class class wbr 5031   × cxp 5518  ⟶wf 6323  ‘cfv 6327  (class class class)co 7140   ∈ cmpo 7142  1st c1st 7676  2nd c2nd 7677  ℝcr 10532  0cc0 10533  1c1 10534   + caddc 10536   < clt 10671   ≤ cle 10672   / cdiv 11293  ℕcn 11632  2c2 11687  ℕ0cn0 11892  ℤ≥cuz 12238  seqcseq 13371 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-seq 13372 This theorem is referenced by:  ruclem10  15591
 Copyright terms: Public domain W3C validator