MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem8 Structured version   Visualization version   GIF version

Theorem ruclem8 16255
Description: Lemma for ruc 16261. The intervals of the 𝐺 sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem8 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem8
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6881 . . . . 5 (𝑘 = 0 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘0)))
2 2fveq3 6881 . . . . 5 (𝑘 = 0 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘0)))
31, 2breq12d 5132 . . . 4 (𝑘 = 0 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0))))
43imbi2d 340 . . 3 (𝑘 = 0 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))))
5 2fveq3 6881 . . . . 5 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
6 2fveq3 6881 . . . . 5 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
75, 6breq12d 5132 . . . 4 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))))
87imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))))
9 2fveq3 6881 . . . . 5 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
10 2fveq3 6881 . . . . 5 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
119, 10breq12d 5132 . . . 4 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
1211imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
13 2fveq3 6881 . . . . 5 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
14 2fveq3 6881 . . . . 5 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
1513, 14breq12d 5132 . . . 4 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
1615imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))))
17 0lt1 11759 . . . . 5 0 < 1
1817a1i 11 . . . 4 (𝜑 → 0 < 1)
19 ruc.1 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ)
20 ruc.2 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
22 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
2319, 20, 21, 22ruclem4 16252 . . . . . 6 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
2423fveq2d 6880 . . . . 5 (𝜑 → (1st ‘(𝐺‘0)) = (1st ‘⟨0, 1⟩))
25 c0ex 11229 . . . . . 6 0 ∈ V
26 1ex 11231 . . . . . 6 1 ∈ V
2725, 26op1st 7996 . . . . 5 (1st ‘⟨0, 1⟩) = 0
2824, 27eqtrdi 2786 . . . 4 (𝜑 → (1st ‘(𝐺‘0)) = 0)
2923fveq2d 6880 . . . . 5 (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘⟨0, 1⟩))
3025, 26op2nd 7997 . . . . 5 (2nd ‘⟨0, 1⟩) = 1
3129, 30eqtrdi 2786 . . . 4 (𝜑 → (2nd ‘(𝐺‘0)) = 1)
3218, 28, 313brtr4d 5151 . . 3 (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))
3319adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐹:ℕ⟶ℝ)
3420adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3519, 20, 21, 22ruclem6 16253 . . . . . . . . . . . 12 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
3635ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
3736adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) ∈ (ℝ × ℝ))
38 xp1st 8020 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
3937, 38syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) ∈ ℝ)
40 xp2nd 8021 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4137, 40syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
42 nn0p1nn 12540 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
43 ffvelcdm 7071 . . . . . . . . . . 11 ((𝐹:ℕ⟶ℝ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4419, 42, 43syl2an 596 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4544adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
46 eqid 2735 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
47 eqid 2735 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
48 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
4933, 34, 39, 41, 45, 46, 47, 48ruclem2 16250 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5049simp2d 1143 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5119, 20, 21, 22ruclem7 16254 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
5251adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
53 1st2nd2 8027 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5437, 53syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5554oveq1d 7420 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5652, 55eqtrd 2770 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5756fveq2d 6880 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5856fveq2d 6880 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5950, 57, 583brtr4d 5151 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))
6059expr 456 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
6160expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
6261a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))) → (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
634, 8, 12, 16, 32, 62nn0ind 12688 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
6463impcom 407 1 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  csb 3874  cun 3924  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  seqcseq 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020
This theorem is referenced by:  ruclem9  16256  ruclem10  16257  ruclem12  16259
  Copyright terms: Public domain W3C validator