MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem8 Structured version   Visualization version   GIF version

Theorem ruclem8 16181
Description: Lemma for ruc 16187. The intervals of the 𝐺 sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem8 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem8
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6845 . . . . 5 (𝑘 = 0 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘0)))
2 2fveq3 6845 . . . . 5 (𝑘 = 0 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘0)))
31, 2breq12d 5115 . . . 4 (𝑘 = 0 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0))))
43imbi2d 340 . . 3 (𝑘 = 0 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))))
5 2fveq3 6845 . . . . 5 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
6 2fveq3 6845 . . . . 5 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
75, 6breq12d 5115 . . . 4 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))))
87imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))))
9 2fveq3 6845 . . . . 5 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
10 2fveq3 6845 . . . . 5 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
119, 10breq12d 5115 . . . 4 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
1211imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
13 2fveq3 6845 . . . . 5 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
14 2fveq3 6845 . . . . 5 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
1513, 14breq12d 5115 . . . 4 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
1615imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))))
17 0lt1 11676 . . . . 5 0 < 1
1817a1i 11 . . . 4 (𝜑 → 0 < 1)
19 ruc.1 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ)
20 ruc.2 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
22 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
2319, 20, 21, 22ruclem4 16178 . . . . . 6 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
2423fveq2d 6844 . . . . 5 (𝜑 → (1st ‘(𝐺‘0)) = (1st ‘⟨0, 1⟩))
25 c0ex 11144 . . . . . 6 0 ∈ V
26 1ex 11146 . . . . . 6 1 ∈ V
2725, 26op1st 7955 . . . . 5 (1st ‘⟨0, 1⟩) = 0
2824, 27eqtrdi 2780 . . . 4 (𝜑 → (1st ‘(𝐺‘0)) = 0)
2923fveq2d 6844 . . . . 5 (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘⟨0, 1⟩))
3025, 26op2nd 7956 . . . . 5 (2nd ‘⟨0, 1⟩) = 1
3129, 30eqtrdi 2780 . . . 4 (𝜑 → (2nd ‘(𝐺‘0)) = 1)
3218, 28, 313brtr4d 5134 . . 3 (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))
3319adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐹:ℕ⟶ℝ)
3420adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3519, 20, 21, 22ruclem6 16179 . . . . . . . . . . . 12 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
3635ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
3736adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) ∈ (ℝ × ℝ))
38 xp1st 7979 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
3937, 38syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) ∈ ℝ)
40 xp2nd 7980 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4137, 40syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
42 nn0p1nn 12457 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
43 ffvelcdm 7035 . . . . . . . . . . 11 ((𝐹:ℕ⟶ℝ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4419, 42, 43syl2an 596 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4544adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
46 eqid 2729 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
47 eqid 2729 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
48 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
4933, 34, 39, 41, 45, 46, 47, 48ruclem2 16176 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5049simp2d 1143 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5119, 20, 21, 22ruclem7 16180 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
5251adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
53 1st2nd2 7986 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5437, 53syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5554oveq1d 7384 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5652, 55eqtrd 2764 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5756fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5856fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5950, 57, 583brtr4d 5134 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))
6059expr 456 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
6160expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
6261a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))) → (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
634, 8, 12, 16, 32, 62nn0ind 12605 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
6463impcom 407 1 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3859  cun 3909  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943
This theorem is referenced by:  ruclem9  16182  ruclem10  16183  ruclem12  16185
  Copyright terms: Public domain W3C validator