MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem8 Structured version   Visualization version   GIF version

Theorem ruclem8 15450
Description: Lemma for ruc 15456. The intervals of the 𝐺 sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem8 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem8
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6504 . . . . 5 (𝑘 = 0 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘0)))
2 2fveq3 6504 . . . . 5 (𝑘 = 0 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘0)))
31, 2breq12d 4942 . . . 4 (𝑘 = 0 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0))))
43imbi2d 333 . . 3 (𝑘 = 0 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))))
5 2fveq3 6504 . . . . 5 (𝑘 = 𝑛 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑛)))
6 2fveq3 6504 . . . . 5 (𝑘 = 𝑛 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑛)))
75, 6breq12d 4942 . . . 4 (𝑘 = 𝑛 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))))
87imbi2d 333 . . 3 (𝑘 = 𝑛 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))))
9 2fveq3 6504 . . . . 5 (𝑘 = (𝑛 + 1) → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺‘(𝑛 + 1))))
10 2fveq3 6504 . . . . 5 (𝑘 = (𝑛 + 1) → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺‘(𝑛 + 1))))
119, 10breq12d 4942 . . . 4 (𝑘 = (𝑛 + 1) → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
1211imbi2d 333 . . 3 (𝑘 = (𝑛 + 1) → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
13 2fveq3 6504 . . . . 5 (𝑘 = 𝑁 → (1st ‘(𝐺𝑘)) = (1st ‘(𝐺𝑁)))
14 2fveq3 6504 . . . . 5 (𝑘 = 𝑁 → (2nd ‘(𝐺𝑘)) = (2nd ‘(𝐺𝑁)))
1513, 14breq12d 4942 . . . 4 (𝑘 = 𝑁 → ((1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘)) ↔ (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
1615imbi2d 333 . . 3 (𝑘 = 𝑁 → ((𝜑 → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑘))) ↔ (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))))
17 0lt1 10963 . . . . 5 0 < 1
1817a1i 11 . . . 4 (𝜑 → 0 < 1)
19 ruc.1 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ)
20 ruc.2 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
22 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
2319, 20, 21, 22ruclem4 15447 . . . . . 6 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
2423fveq2d 6503 . . . . 5 (𝜑 → (1st ‘(𝐺‘0)) = (1st ‘⟨0, 1⟩))
25 c0ex 10433 . . . . . 6 0 ∈ V
26 1ex 10435 . . . . . 6 1 ∈ V
2725, 26op1st 7509 . . . . 5 (1st ‘⟨0, 1⟩) = 0
2824, 27syl6eq 2830 . . . 4 (𝜑 → (1st ‘(𝐺‘0)) = 0)
2923fveq2d 6503 . . . . 5 (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘⟨0, 1⟩))
3025, 26op2nd 7510 . . . . 5 (2nd ‘⟨0, 1⟩) = 1
3129, 30syl6eq 2830 . . . 4 (𝜑 → (2nd ‘(𝐺‘0)) = 1)
3218, 28, 313brtr4d 4961 . . 3 (𝜑 → (1st ‘(𝐺‘0)) < (2nd ‘(𝐺‘0)))
3319adantr 473 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐹:ℕ⟶ℝ)
3420adantr 473 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3519, 20, 21, 22ruclem6 15448 . . . . . . . . . . . 12 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
3635ffvelrnda 6676 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
3736adantrr 704 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) ∈ (ℝ × ℝ))
38 xp1st 7533 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
3937, 38syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) ∈ ℝ)
40 xp2nd 7534 . . . . . . . . . 10 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4137, 40syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
42 nn0p1nn 11748 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
43 ffvelrn 6674 . . . . . . . . . . 11 ((𝐹:ℕ⟶ℝ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4419, 42, 43syl2an 586 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
4544adantrr 704 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
46 eqid 2778 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
47 eqid 2778 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
48 simprr 760 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))
4933, 34, 39, 41, 45, 46, 47, 48ruclem2 15445 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((1st ‘(𝐺𝑛)) ≤ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ∧ (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) ≤ (2nd ‘(𝐺𝑛))))
5049simp2d 1123 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))) < (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5119, 20, 21, 22ruclem7 15449 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
5251adantrr 704 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))))
53 1st2nd2 7540 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5437, 53syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
5554oveq1d 6991 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → ((𝐺𝑛)𝐷(𝐹‘(𝑛 + 1))) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5652, 55eqtrd 2814 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (𝐺‘(𝑛 + 1)) = (⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1))))
5756fveq2d 6503 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) = (1st ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5856fveq2d 6503 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (2nd ‘(𝐺‘(𝑛 + 1))) = (2nd ‘(⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩𝐷(𝐹‘(𝑛 + 1)))))
5950, 57, 583brtr4d 4961 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)))) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))
6059expr 449 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1)))))
6160expcom 406 . . . 4 (𝑛 ∈ ℕ0 → (𝜑 → ((1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛)) → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
6261a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝜑 → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺𝑛))) → (𝜑 → (1st ‘(𝐺‘(𝑛 + 1))) < (2nd ‘(𝐺‘(𝑛 + 1))))))
634, 8, 12, 16, 32, 62nn0ind 11890 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁))))
6463impcom 399 1 ((𝜑𝑁 ∈ ℕ0) → (1st ‘(𝐺𝑁)) < (2nd ‘(𝐺𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  csb 3786  cun 3827  ifcif 4350  {csn 4441  cop 4447   class class class wbr 4929   × cxp 5405  wf 6184  cfv 6188  (class class class)co 6976  cmpo 6978  1st c1st 7499  2nd c2nd 7500  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   < clt 10474  cle 10475   / cdiv 11098  cn 11439  2c2 11495  0cn0 11707  seqcseq 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-seq 13185
This theorem is referenced by:  ruclem9  15451  ruclem10  15452  ruclem12  15454
  Copyright terms: Public domain W3C validator