![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1sca2 | Structured version Visualization version GIF version |
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1sca2 | ⊢ ( I ‘𝑅) = (Scalar‘𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6985 | . . 3 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
2 | ply1lmod.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1sca 22270 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘𝑃)) |
4 | 1, 3 | eqtrd 2775 | . 2 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = (Scalar‘𝑃)) |
5 | fvprc 6899 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
6 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
7 | 6 | fveq2d 6911 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (Scalar‘(Poly1‘𝑅)) = (Scalar‘∅)) |
8 | 2 | fveq2i 6910 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘(Poly1‘𝑅)) |
9 | scaid 17361 | . . . . 5 ⊢ Scalar = Slot (Scalar‘ndx) | |
10 | 9 | str0 17223 | . . . 4 ⊢ ∅ = (Scalar‘∅) |
11 | 7, 8, 10 | 3eqtr4g 2800 | . . 3 ⊢ (¬ 𝑅 ∈ V → (Scalar‘𝑃) = ∅) |
12 | 5, 11 | eqtr4d 2778 | . 2 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = (Scalar‘𝑃)) |
13 | 4, 12 | pm2.61i 182 | 1 ⊢ ( I ‘𝑅) = (Scalar‘𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 I cid 5582 ‘cfv 6563 ndxcnx 17227 Scalarcsca 17301 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-tset 17317 df-ple 17318 df-psr 21947 df-opsr 21951 df-psr1 22197 df-ply1 22199 |
This theorem is referenced by: ply1tmcl 22291 ply1scltm 22300 ply1sclf 22304 ply1scl0OLD 22310 ply1scl1OLD 22313 deg1invg 26160 |
Copyright terms: Public domain | W3C validator |