![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitgclre | Structured version Visualization version GIF version |
Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
sitgclre.1 | ⊢ (𝜑 → 𝑊 ∈ Ban) |
sitgclre.3 | ⊢ (𝜑 → (Scalar‘𝑊) = ℝfld) |
Ref | Expression |
---|---|
sitgclre | ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | . 2 ⊢ 𝐵 = (Base‘𝑊) | |
2 | sitgval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | sitgval.s | . 2 ⊢ 𝑆 = (sigaGen‘𝐽) | |
4 | sitgval.0 | . 2 ⊢ 0 = (0g‘𝑊) | |
5 | sitgval.x | . 2 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | sitgval.h | . 2 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
7 | sitgval.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
8 | sitgval.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
9 | sibfmbl.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
10 | sitgclre.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ Ban) | |
11 | sitgclre.3 | . . 3 ⊢ (𝜑 → (Scalar‘𝑊) = ℝfld) | |
12 | rerrext 33824 | . . 3 ⊢ ℝfld ∈ ℝExt | |
13 | 11, 12 | eqeltrdi 2834 | . 2 ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 | sitgclbn 34177 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cuni 4913 dom cdm 5682 ran crn 5683 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 Scalarcsca 17269 ·𝑠 cvsca 17270 TopOpenctopn 17436 0gc0g 17454 ℝfldcrefld 21600 Bancbn 25352 ℝHomcrrh 33808 ℝExt crrext 33809 sigaGencsigagen 33971 measurescmeas 34028 sitgcsitg 34163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-dvds 16257 df-gcd 16495 df-numer 16737 df-denom 16738 df-gz 16932 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-proset 18320 df-poset 18338 df-plt 18355 df-toset 18442 df-ps 18591 df-tsr 18592 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-ghm 19207 df-cntz 19311 df-od 19526 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-dvr 20383 df-rhm 20454 df-nzr 20495 df-subrng 20528 df-subrg 20553 df-drng 20709 df-field 20710 df-abv 20788 df-lmod 20838 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-metu 21342 df-cnfld 21344 df-zring 21437 df-zrh 21493 df-zlm 21494 df-chr 21495 df-refld 21601 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-cn 23222 df-cnp 23223 df-haus 23310 df-reg 23311 df-cmp 23382 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-fcls 23936 df-cnext 24055 df-ust 24196 df-utop 24227 df-uss 24252 df-usp 24253 df-ucn 24272 df-cfilu 24283 df-cusp 24294 df-xms 24317 df-ms 24318 df-tms 24319 df-nm 24582 df-ngp 24583 df-nrg 24585 df-nlm 24586 df-nvc 24587 df-cncf 24889 df-cfil 25274 df-cmet 25276 df-cms 25354 df-bn 25355 df-omnd 32934 df-ogrp 32935 df-orng 33175 df-ofld 33176 df-qqh 33788 df-rrh 33810 df-rrext 33814 df-esum 33861 df-siga 33942 df-sigagen 33972 df-meas 34029 df-mbfm 34083 df-sitg 34164 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |