Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsssmfmbflem | Structured version Visualization version GIF version |
Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsssmfmbflem.s | ⊢ 𝑆 = dom vol |
nsssmfmbflem.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
nsssmfmbflem.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
nsssmfmbflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) |
Ref | Expression |
---|---|
nsssmfmbflem | ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10695 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
2 | nsssmfmbflem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) | |
3 | 1, 2 | fmptd 6875 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
4 | reex 10679 | . . . . 5 ⊢ ℝ ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) |
6 | nsssmfmbflem.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
7 | 5, 6 | ssexd 5198 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
8 | 3, 7 | fexd 6987 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
9 | nsssmfmbflem.s | . . 3 ⊢ 𝑆 = dom vol | |
10 | nsssmfmbflem.n | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) | |
11 | 9, 6, 10, 2 | smfmbfcex 43794 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
12 | eleq1 2839 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ (SMblFn‘𝑆) ↔ 𝐹 ∈ (SMblFn‘𝑆))) | |
13 | eleq1 2839 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn)) | |
14 | 13 | notbid 321 | . . . 4 ⊢ (𝑓 = 𝐹 → (¬ 𝑓 ∈ MblFn ↔ ¬ 𝐹 ∈ MblFn)) |
15 | 12, 14 | anbi12d 633 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn) ↔ (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn))) |
16 | 15 | spcegv 3517 | . 2 ⊢ (𝐹 ∈ V → ((𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn))) |
17 | 8, 11, 16 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 ↦ cmpt 5116 dom cdm 5528 ‘cfv 6340 ℝcr 10587 0cc0 10588 volcvol 24176 MblFncmbf 24327 SMblFncsmblfn 43735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cc 9908 ax-ac2 9936 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-disj 5002 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-inf 8953 df-oi 9020 df-dju 9376 df-card 9414 df-acn 9417 df-ac 9589 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-q 12402 df-rp 12444 df-xadd 12562 df-ioo 12796 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 df-sum 15104 df-rest 16767 df-xmet 20172 df-met 20173 df-ovol 24177 df-vol 24178 df-mbf 24332 df-salg 43352 df-smblfn 43736 |
This theorem is referenced by: nsssmfmbf 43813 |
Copyright terms: Public domain | W3C validator |