| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nsssmfmbflem | Structured version Visualization version GIF version | ||
| Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| nsssmfmbflem.s | ⊢ 𝑆 = dom vol |
| nsssmfmbflem.x | ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| nsssmfmbflem.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
| nsssmfmbflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) |
| Ref | Expression |
|---|---|
| nsssmfmbflem | ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11245 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
| 2 | nsssmfmbflem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 0) | |
| 3 | 1, 2 | fmptd 7113 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 4 | reex 11227 | . . . . 5 ⊢ ℝ ∈ V | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ V) |
| 6 | nsssmfmbflem.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℝ) | |
| 7 | 5, 6 | ssexd 5304 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 8 | 3, 7 | fexd 7228 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 9 | nsssmfmbflem.s | . . 3 ⊢ 𝑆 = dom vol | |
| 10 | nsssmfmbflem.n | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) | |
| 11 | 9, 6, 10, 2 | smfmbfcex 46708 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn)) |
| 12 | eleq1 2821 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ (SMblFn‘𝑆) ↔ 𝐹 ∈ (SMblFn‘𝑆))) | |
| 13 | eleq1 2821 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn)) | |
| 14 | 13 | notbid 318 | . . . 4 ⊢ (𝑓 = 𝐹 → (¬ 𝑓 ∈ MblFn ↔ ¬ 𝐹 ∈ MblFn)) |
| 15 | 12, 14 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn) ↔ (𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn))) |
| 16 | 15 | spcegv 3580 | . 2 ⊢ (𝐹 ∈ V → ((𝐹 ∈ (SMblFn‘𝑆) ∧ ¬ 𝐹 ∈ MblFn) → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn))) |
| 17 | 8, 11, 16 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑓(𝑓 ∈ (SMblFn‘𝑆) ∧ ¬ 𝑓 ∈ MblFn)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ↦ cmpt 5205 dom cdm 5665 ‘cfv 6540 ℝcr 11135 0cc0 11136 volcvol 25433 MblFncmbf 25584 SMblFncsmblfn 46643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cc 10456 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-oi 9531 df-dju 9922 df-card 9960 df-acn 9963 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-q 12972 df-rp 13016 df-xadd 13136 df-ioo 13372 df-ico 13374 df-icc 13375 df-fz 13529 df-fzo 13676 df-fl 13813 df-seq 14024 df-exp 14084 df-hash 14351 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-clim 15505 df-rlim 15506 df-sum 15704 df-rest 17437 df-xmet 21318 df-met 21319 df-ovol 25434 df-vol 25435 df-mbf 25589 df-salg 46257 df-smblfn 46644 |
| This theorem is referenced by: nsssmfmbf 46727 |
| Copyright terms: Public domain | W3C validator |