![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsssmfmbflem | Structured version Visualization version GIF version |
Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsssmfmbflem.s | β’ π = dom vol |
nsssmfmbflem.x | β’ (π β π β β) |
nsssmfmbflem.n | β’ (π β Β¬ π β π) |
nsssmfmbflem.f | β’ πΉ = (π₯ β π β¦ 0) |
Ref | Expression |
---|---|
nsssmfmbflem | β’ (π β βπ(π β (SMblFnβπ) β§ Β¬ π β MblFn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11214 | . . . 4 β’ ((π β§ π₯ β π) β 0 β β) | |
2 | nsssmfmbflem.f | . . . 4 β’ πΉ = (π₯ β π β¦ 0) | |
3 | 1, 2 | fmptd 7105 | . . 3 β’ (π β πΉ:πβΆβ) |
4 | reex 11197 | . . . . 5 β’ β β V | |
5 | 4 | a1i 11 | . . . 4 β’ (π β β β V) |
6 | nsssmfmbflem.x | . . . 4 β’ (π β π β β) | |
7 | 5, 6 | ssexd 5314 | . . 3 β’ (π β π β V) |
8 | 3, 7 | fexd 7220 | . 2 β’ (π β πΉ β V) |
9 | nsssmfmbflem.s | . . 3 β’ π = dom vol | |
10 | nsssmfmbflem.n | . . 3 β’ (π β Β¬ π β π) | |
11 | 9, 6, 10, 2 | smfmbfcex 45961 | . 2 β’ (π β (πΉ β (SMblFnβπ) β§ Β¬ πΉ β MblFn)) |
12 | eleq1 2813 | . . . 4 β’ (π = πΉ β (π β (SMblFnβπ) β πΉ β (SMblFnβπ))) | |
13 | eleq1 2813 | . . . . 5 β’ (π = πΉ β (π β MblFn β πΉ β MblFn)) | |
14 | 13 | notbid 318 | . . . 4 β’ (π = πΉ β (Β¬ π β MblFn β Β¬ πΉ β MblFn)) |
15 | 12, 14 | anbi12d 630 | . . 3 β’ (π = πΉ β ((π β (SMblFnβπ) β§ Β¬ π β MblFn) β (πΉ β (SMblFnβπ) β§ Β¬ πΉ β MblFn))) |
16 | 15 | spcegv 3579 | . 2 β’ (πΉ β V β ((πΉ β (SMblFnβπ) β§ Β¬ πΉ β MblFn) β βπ(π β (SMblFnβπ) β§ Β¬ π β MblFn))) |
17 | 8, 11, 16 | sylc 65 | 1 β’ (π β βπ(π β (SMblFnβπ) β§ Β¬ π β MblFn)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 Vcvv 3466 β wss 3940 β¦ cmpt 5221 dom cdm 5666 βcfv 6533 βcr 11105 0cc0 11106 volcvol 25314 MblFncmbf 25465 SMblFncsmblfn 45896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-disj 5104 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-xadd 13090 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-rest 17367 df-xmet 21221 df-met 21222 df-ovol 25315 df-vol 25316 df-mbf 25470 df-salg 45510 df-smblfn 45897 |
This theorem is referenced by: nsssmfmbf 45980 |
Copyright terms: Public domain | W3C validator |