MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiublem Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiublem 13955
Description: Lemma for fsuppmapnn0fiub 13956 and fsuppmapnn0fiubex 13957. (Contributed by AV, 2-Oct-2019.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiublem ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiublem
StepHypRef Expression
1 fsuppmapnn0fiub.u . . . 4 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
2 nfv 1914 . . . . . . 7 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
3 nfra1 3261 . . . . . . . 8 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4 nfv 1914 . . . . . . . 8 𝑓 𝑈 ≠ ∅
53, 4nfan 1899 . . . . . . 7 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
62, 5nfan 1899 . . . . . 6 𝑓((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
7 suppssdm 8156 . . . . . . . 8 (𝑓 supp 𝑍) ⊆ dom 𝑓
8 ssel2 3941 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
9 elmapfn 8838 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
10 fndm 6621 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
11 eqimss 4005 . . . . . . . . . . . . 13 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
128, 9, 10, 114syl 19 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
1312ex 412 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
14133ad2ant1 1133 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
1514adantr 480 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
1615imp 406 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
177, 16sstrid 3958 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1817ex 412 . . . . . 6 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℕ0))
196, 18ralrimi 3235 . . . . 5 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
20 iunss 5009 . . . . 5 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0 ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
2119, 20sylibr 234 . . . 4 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
221, 21eqsstrid 3985 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ⊆ ℕ0)
23 ltso 11254 . . . . 5 < Or ℝ
2423a1i 11 . . . 4 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → < Or ℝ)
25 simp2 1137 . . . . . 6 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
26 id 22 . . . . . . . . 9 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
2726fsuppimpd 9320 . . . . . . . 8 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
2827ralimi 3066 . . . . . . 7 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
2928adantr 480 . . . . . 6 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
30 iunfi 9294 . . . . . 6 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
3125, 29, 30syl2an 596 . . . . 5 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
321, 31eqeltrid 2832 . . . 4 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ∈ Fin)
33 simprr 772 . . . 4 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ≠ ∅)
348, 9, 103syl 18 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
3534ex 412 . . . . . . . . . . . 12 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
36353ad2ant1 1133 . . . . . . . . . . 11 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
3736adantr 480 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
3837imp 406 . . . . . . . . 9 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
39 nn0ssre 12446 . . . . . . . . 9 0 ⊆ ℝ
4038, 39eqsstrdi 3991 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
417, 40sstrid 3958 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
4241ex 412 . . . . . 6 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
436, 42ralrimi 3235 . . . . 5 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
441sseq1i 3975 . . . . . 6 (𝑈 ⊆ ℝ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
45 iunss 5009 . . . . . 6 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
4644, 45bitri 275 . . . . 5 (𝑈 ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
4743, 46sylibr 234 . . . 4 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ⊆ ℝ)
48 fsuppmapnn0fiub.s . . . . 5 𝑆 = sup(𝑈, ℝ, < )
49 fisupcl 9421 . . . . 5 (( < Or ℝ ∧ (𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ)) → sup(𝑈, ℝ, < ) ∈ 𝑈)
5048, 49eqeltrid 2832 . . . 4 (( < Or ℝ ∧ (𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ)) → 𝑆𝑈)
5124, 32, 33, 47, 50syl13anc 1374 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆𝑈)
5222, 51sseldd 3947 . 2 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
5352ex 412 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296   ciun 4955   class class class wbr 5107   Or wor 5545  dom cdm 5638   Fn wfn 6506  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  supcsup 9391  cr 11067   < clt 11208  0cn0 12442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-nn 12187  df-n0 12443
This theorem is referenced by:  fsuppmapnn0fiub  13956  fsuppmapnn0fiubex  13957
  Copyright terms: Public domain W3C validator