![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeid2 | Structured version Visualization version GIF version |
Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrub.1 | ⊢ 𝐴 = (coeff‘𝐹) |
dgrub.2 | ⊢ 𝑁 = (deg‘𝐹) |
Ref | Expression |
---|---|
coeid2 | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgrub.1 | . . . 4 ⊢ 𝐴 = (coeff‘𝐹) | |
2 | dgrub.2 | . . . 4 ⊢ 𝑁 = (deg‘𝐹) | |
3 | 1, 2 | coeid 26289 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
4 | 3 | fveq1d 6921 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘𝑋) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑋)) |
5 | oveq1 7452 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑧↑𝑘) = (𝑋↑𝑘)) | |
6 | 5 | oveq2d 7461 | . . . 4 ⊢ (𝑧 = 𝑋 → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑋↑𝑘))) |
7 | 6 | sumeq2sdv 15747 | . . 3 ⊢ (𝑧 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) |
8 | eqid 2734 | . . 3 ⊢ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) | |
9 | sumex 15732 | . . 3 ⊢ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘)) ∈ V | |
10 | 7, 8, 9 | fvmpt 7027 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) |
11 | 4, 10 | sylan9eq 2794 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑋↑𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ↦ cmpt 5252 ‘cfv 6572 (class class class)co 7445 ℂcc 11178 0cc0 11180 · cmul 11185 ...cfz 13563 ↑cexp 14108 Σcsu 15730 Polycply 26235 coeffccoe 26237 degcdgr 26238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-map 8882 df-pm 8883 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-sup 9507 df-inf 9508 df-oi 9575 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-n0 12550 df-z 12636 df-uz 12900 df-rp 13054 df-fz 13564 df-fzo 13708 df-fl 13839 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-rlim 15531 df-sum 15731 df-0p 25717 df-ply 26239 df-coe 26241 df-dgr 26242 |
This theorem is referenced by: coeid3 26291 coefv0 26299 plyrecj 26331 vieta1 26364 elqaalem3 26373 aareccl 26378 aalioulem1 26384 ftalem1 27125 ftalem5 27129 signsplypnf 34519 cnsrplycl 43064 elaa2lem 46088 etransclem46 46135 |
Copyright terms: Public domain | W3C validator |