MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemul Structured version   Visualization version   GIF version

Theorem coemul 25318
Description: A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coemul ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑁   𝑆,𝑘

Proof of Theorem coemul
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coefv0.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 coeadd.2 . . . . . 6 𝐵 = (coeff‘𝐺)
3 eqid 2738 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
4 eqid 2738 . . . . . 6 (deg‘𝐺) = (deg‘𝐺)
51, 2, 3, 4coemullem 25316 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹f · 𝐺)) ≤ ((deg‘𝐹) + (deg‘𝐺))))
65simpld 494 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))))
76fveq1d 6758 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘𝑁) = ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑁))
8 oveq2 7263 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
9 fvoveq1 7278 . . . . . . 7 (𝑛 = 𝑁 → (𝐵‘(𝑛𝑘)) = (𝐵‘(𝑁𝑘)))
109oveq2d 7271 . . . . . 6 (𝑛 = 𝑁 → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
1110adantr 480 . . . . 5 ((𝑛 = 𝑁𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
128, 11sumeq12dv 15346 . . . 4 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
13 eqid 2738 . . . 4 (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))
14 sumex 15327 . . . 4 Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))) ∈ V
1512, 13, 14fvmpt 6857 . . 3 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
167, 15sylan9eq 2799 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
17163impa 1108 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝐵‘(𝑁𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  f cof 7509  0cc0 10802   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  0cn0 12163  ...cfz 13168  Σcsu 15325  Polycply 25250  coeffccoe 25252  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  coemulhi  25320  coemulc  25321  vieta1lem2  25376  plymulx0  32426
  Copyright terms: Public domain W3C validator