![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coemul | Structured version Visualization version GIF version |
Description: A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
coefv0.1 | β’ π΄ = (coeffβπΉ) |
coeadd.2 | β’ π΅ = (coeffβπΊ) |
Ref | Expression |
---|---|
coemul | β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ π β β0) β ((coeffβ(πΉ βf Β· πΊ))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coefv0.1 | . . . . . 6 β’ π΄ = (coeffβπΉ) | |
2 | coeadd.2 | . . . . . 6 β’ π΅ = (coeffβπΊ) | |
3 | eqid 2732 | . . . . . 6 β’ (degβπΉ) = (degβπΉ) | |
4 | eqid 2732 | . . . . . 6 β’ (degβπΊ) = (degβπΊ) | |
5 | 1, 2, 3, 4 | coemullem 25763 | . . . . 5 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β ((coeffβ(πΉ βf Β· πΊ)) = (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) β§ (degβ(πΉ βf Β· πΊ)) β€ ((degβπΉ) + (degβπΊ)))) |
6 | 5 | simpld 495 | . . . 4 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ(πΉ βf Β· πΊ)) = (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))))) |
7 | 6 | fveq1d 6893 | . . 3 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β ((coeffβ(πΉ βf Β· πΊ))βπ) = ((π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))))βπ)) |
8 | oveq2 7416 | . . . . 5 β’ (π = π β (0...π) = (0...π)) | |
9 | fvoveq1 7431 | . . . . . . 7 β’ (π = π β (π΅β(π β π)) = (π΅β(π β π))) | |
10 | 9 | oveq2d 7424 | . . . . . 6 β’ (π = π β ((π΄βπ) Β· (π΅β(π β π))) = ((π΄βπ) Β· (π΅β(π β π)))) |
11 | 10 | adantr 481 | . . . . 5 β’ ((π = π β§ π β (0...π)) β ((π΄βπ) Β· (π΅β(π β π))) = ((π΄βπ) Β· (π΅β(π β π)))) |
12 | 8, 11 | sumeq12dv 15651 | . . . 4 β’ (π = π β Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
13 | eqid 2732 | . . . 4 β’ (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) = (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) | |
14 | sumex 15633 | . . . 4 β’ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) β V | |
15 | 12, 13, 14 | fvmpt 6998 | . . 3 β’ (π β β0 β ((π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
16 | 7, 15 | sylan9eq 2792 | . 2 β’ (((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β§ π β β0) β ((coeffβ(πΉ βf Β· πΊ))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
17 | 16 | 3impa 1110 | 1 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ π β β0) β ((coeffβ(πΉ βf Β· πΊ))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 βf cof 7667 0cc0 11109 + caddc 11112 Β· cmul 11114 β€ cle 11248 β cmin 11443 β0cn0 12471 ...cfz 13483 Ξ£csu 15631 Polycply 25697 coeffccoe 25699 degcdgr 25700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 df-0p 25186 df-ply 25701 df-coe 25703 df-dgr 25704 |
This theorem is referenced by: coemulhi 25767 coemulc 25768 vieta1lem2 25823 plymulx0 33553 |
Copyright terms: Public domain | W3C validator |