![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coemul | Structured version Visualization version GIF version |
Description: A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
coefv0.1 | ⊢ 𝐴 = (coeff‘𝐹) |
coeadd.2 | ⊢ 𝐵 = (coeff‘𝐺) |
Ref | Expression |
---|---|
coemul | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coefv0.1 | . . . . . 6 ⊢ 𝐴 = (coeff‘𝐹) | |
2 | coeadd.2 | . . . . . 6 ⊢ 𝐵 = (coeff‘𝐺) | |
3 | eqid 2738 | . . . . . 6 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
4 | eqid 2738 | . . . . . 6 ⊢ (deg‘𝐺) = (deg‘𝐺) | |
5 | 1, 2, 3, 4 | coemullem 25539 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) ∧ (deg‘(𝐹 ∘f · 𝐺)) ≤ ((deg‘𝐹) + (deg‘𝐺)))) |
6 | 5 | simpld 496 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))))) |
7 | 6 | fveq1d 6840 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))))‘𝑁)) |
8 | oveq2 7358 | . . . . 5 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
9 | fvoveq1 7373 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝐵‘(𝑛 − 𝑘)) = (𝐵‘(𝑁 − 𝑘))) | |
10 | 9 | oveq2d 7366 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) = ((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
11 | 10 | adantr 482 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) = ((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
12 | 8, 11 | sumeq12dv 15527 | . . . 4 ⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
13 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) | |
14 | sumex 15508 | . . . 4 ⊢ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘))) ∈ V | |
15 | 12, 13, 14 | fvmpt 6944 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
16 | 7, 15 | sylan9eq 2798 | . 2 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
17 | 16 | 3impa 1111 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5104 ↦ cmpt 5187 ‘cfv 6492 (class class class)co 7350 ∘f cof 7606 0cc0 10985 + caddc 10988 · cmul 10990 ≤ cle 11124 − cmin 11319 ℕ0cn0 12347 ...cfz 13354 Σcsu 15506 Polycply 25473 coeffccoe 25475 degcdgr 25476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-inf2 9511 ax-cnex 11041 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 ax-pre-sup 11063 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-isom 6501 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-of 7608 df-om 7794 df-1st 7912 df-2nd 7913 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-1o 8380 df-er 8582 df-map 8701 df-pm 8702 df-en 8818 df-dom 8819 df-sdom 8820 df-fin 8821 df-sup 9312 df-inf 9313 df-oi 9380 df-card 9809 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-2 12150 df-3 12151 df-n0 12348 df-z 12434 df-uz 12698 df-rp 12846 df-fz 13355 df-fzo 13498 df-fl 13627 df-seq 13837 df-exp 13898 df-hash 14160 df-cj 14919 df-re 14920 df-im 14921 df-sqrt 15055 df-abs 15056 df-clim 15306 df-rlim 15307 df-sum 15507 df-0p 24962 df-ply 25477 df-coe 25479 df-dgr 25480 |
This theorem is referenced by: coemulhi 25543 coemulc 25544 vieta1lem2 25599 plymulx0 32939 |
Copyright terms: Public domain | W3C validator |