![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coemul | Structured version Visualization version GIF version |
Description: A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
coefv0.1 | β’ π΄ = (coeffβπΉ) |
coeadd.2 | β’ π΅ = (coeffβπΊ) |
Ref | Expression |
---|---|
coemul | β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ π β β0) β ((coeffβ(πΉ βf Β· πΊ))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coefv0.1 | . . . . . 6 β’ π΄ = (coeffβπΉ) | |
2 | coeadd.2 | . . . . . 6 β’ π΅ = (coeffβπΊ) | |
3 | eqid 2726 | . . . . . 6 β’ (degβπΉ) = (degβπΉ) | |
4 | eqid 2726 | . . . . . 6 β’ (degβπΊ) = (degβπΊ) | |
5 | 1, 2, 3, 4 | coemullem 26135 | . . . . 5 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β ((coeffβ(πΉ βf Β· πΊ)) = (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) β§ (degβ(πΉ βf Β· πΊ)) β€ ((degβπΉ) + (degβπΊ)))) |
6 | 5 | simpld 494 | . . . 4 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (coeffβ(πΉ βf Β· πΊ)) = (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))))) |
7 | 6 | fveq1d 6886 | . . 3 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β ((coeffβ(πΉ βf Β· πΊ))βπ) = ((π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))))βπ)) |
8 | oveq2 7412 | . . . . 5 β’ (π = π β (0...π) = (0...π)) | |
9 | fvoveq1 7427 | . . . . . . 7 β’ (π = π β (π΅β(π β π)) = (π΅β(π β π))) | |
10 | 9 | oveq2d 7420 | . . . . . 6 β’ (π = π β ((π΄βπ) Β· (π΅β(π β π))) = ((π΄βπ) Β· (π΅β(π β π)))) |
11 | 10 | adantr 480 | . . . . 5 β’ ((π = π β§ π β (0...π)) β ((π΄βπ) Β· (π΅β(π β π))) = ((π΄βπ) Β· (π΅β(π β π)))) |
12 | 8, 11 | sumeq12dv 15656 | . . . 4 β’ (π = π β Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
13 | eqid 2726 | . . . 4 β’ (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) = (π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) | |
14 | sumex 15638 | . . . 4 β’ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))) β V | |
15 | 12, 13, 14 | fvmpt 6991 | . . 3 β’ (π β β0 β ((π β β0 β¦ Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π))))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
16 | 7, 15 | sylan9eq 2786 | . 2 β’ (((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β§ π β β0) β ((coeffβ(πΉ βf Β· πΊ))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
17 | 16 | 3impa 1107 | 1 β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ π β β0) β ((coeffβ(πΉ βf Β· πΊ))βπ) = Ξ£π β (0...π)((π΄βπ) Β· (π΅β(π β π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5141 β¦ cmpt 5224 βcfv 6536 (class class class)co 7404 βf cof 7664 0cc0 11109 + caddc 11112 Β· cmul 11114 β€ cle 11250 β cmin 11445 β0cn0 12473 ...cfz 13487 Ξ£csu 15636 Polycply 26069 coeffccoe 26071 degcdgr 26072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-0p 25550 df-ply 26073 df-coe 26075 df-dgr 26076 |
This theorem is referenced by: coemulhi 26139 coemulc 26140 vieta1lem2 26197 plymulx0 34088 |
Copyright terms: Public domain | W3C validator |