| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aaliou3lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for aaliou3 26286. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aaliou3lem.c | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) |
| aaliou3lem.d | ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) |
| aaliou3lem.e | ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) |
| Ref | Expression |
|---|---|
| aaliou3lem5 | ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . 4 ⊢ (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴)) | |
| 2 | 1 | sumeq1d 15607 | . . 3 ⊢ (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
| 3 | aaliou3lem.e | . . 3 ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) | |
| 4 | sumex 15595 | . . 3 ⊢ Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
| 6 | fzfid 13880 | . . 3 ⊢ (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin) | |
| 7 | elfznn 13453 | . . . . 5 ⊢ (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ) | |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ) |
| 9 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏)) | |
| 10 | 9 | negeqd 11354 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏)) |
| 11 | 10 | oveq2d 7362 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏))) |
| 12 | aaliou3lem.c | . . . . . 6 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) | |
| 13 | ovex 7379 | . . . . . 6 ⊢ (2↑-(!‘𝑏)) ∈ V | |
| 14 | 11, 12, 13 | fvmpt 6929 | . . . . 5 ⊢ (𝑏 ∈ ℕ → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
| 15 | 2rp 12895 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
| 16 | nnnn0 12388 | . . . . . . . . . 10 ⊢ (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0) | |
| 17 | 16 | faccld 14191 | . . . . . . . . 9 ⊢ (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ) |
| 18 | 17 | nnzd 12495 | . . . . . . . 8 ⊢ (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ) |
| 19 | 18 | znegcld 12579 | . . . . . . 7 ⊢ (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ) |
| 20 | rpexpcl 13987 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+) | |
| 21 | 15, 19, 20 | sylancr 587 | . . . . . 6 ⊢ (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+) |
| 22 | 21 | rpred 12934 | . . . . 5 ⊢ (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ) |
| 23 | 14, 22 | eqeltrd 2831 | . . . 4 ⊢ (𝑏 ∈ ℕ → (𝐹‘𝑏) ∈ ℝ) |
| 24 | 8, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹‘𝑏) ∈ ℝ) |
| 25 | 6, 24 | fsumrecl 15641 | . 2 ⊢ (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) ∈ ℝ) |
| 26 | 5, 25 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 -cneg 11345 ℕcn 12125 2c2 12180 ℤcz 12468 ℝ+crp 12890 ...cfz 13407 ↑cexp 13968 !cfa 14180 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: aaliou3lem7 26284 aaliou3lem9 26285 |
| Copyright terms: Public domain | W3C validator |