MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem5 Structured version   Visualization version   GIF version

Theorem aaliou3lem5 25851
Description: Lemma for aaliou3 25855. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem5 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem5
StepHypRef Expression
1 oveq2 7413 . . . 4 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 15643 . . 3 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . 3 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 15630 . . 3 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 6995 . 2 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
6 fzfid 13934 . . 3 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
7 elfznn 13526 . . . . 5 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
87adantl 482 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
9 fveq2 6888 . . . . . . . 8 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
109negeqd 11450 . . . . . . 7 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1110oveq2d 7421 . . . . . 6 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
12 aaliou3lem.c . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
13 ovex 7438 . . . . . 6 (2↑-(!‘𝑏)) ∈ V
1411, 12, 13fvmpt 6995 . . . . 5 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
15 2rp 12975 . . . . . . 7 2 ∈ ℝ+
16 nnnn0 12475 . . . . . . . . . 10 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
1716faccld 14240 . . . . . . . . 9 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
1817nnzd 12581 . . . . . . . 8 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
1918znegcld 12664 . . . . . . 7 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
20 rpexpcl 14042 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2115, 19, 20sylancr 587 . . . . . 6 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
2221rpred 13012 . . . . 5 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ)
2314, 22eqeltrd 2833 . . . 4 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℝ)
248, 23syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℝ)
256, 24fsumrecl 15676 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ ℝ)
265, 25eqeltrd 2833 1 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cmpt 5230  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107  -cneg 11441  cn 12208  2c2 12263  cz 12554  +crp 12970  ...cfz 13480  cexp 14023  !cfa 14229  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-fac 14230  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  aaliou3lem7  25853  aaliou3lem9  25854
  Copyright terms: Public domain W3C validator