Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aaliou3lem5 | Structured version Visualization version GIF version |
Description: Lemma for aaliou3 25511. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aaliou3lem.c | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) |
aaliou3lem.d | ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) |
aaliou3lem.e | ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) |
Ref | Expression |
---|---|
aaliou3lem5 | ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . . 4 ⊢ (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴)) | |
2 | 1 | sumeq1d 15413 | . . 3 ⊢ (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
3 | aaliou3lem.e | . . 3 ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) | |
4 | sumex 15399 | . . 3 ⊢ Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) ∈ V | |
5 | 2, 3, 4 | fvmpt 6875 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
6 | fzfid 13693 | . . 3 ⊢ (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin) | |
7 | elfznn 13285 | . . . . 5 ⊢ (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ) | |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ) |
9 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏)) | |
10 | 9 | negeqd 11215 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏)) |
11 | 10 | oveq2d 7291 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏))) |
12 | aaliou3lem.c | . . . . . 6 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) | |
13 | ovex 7308 | . . . . . 6 ⊢ (2↑-(!‘𝑏)) ∈ V | |
14 | 11, 12, 13 | fvmpt 6875 | . . . . 5 ⊢ (𝑏 ∈ ℕ → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
15 | 2rp 12735 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
16 | nnnn0 12240 | . . . . . . . . . 10 ⊢ (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0) | |
17 | 16 | faccld 13998 | . . . . . . . . 9 ⊢ (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ) |
18 | 17 | nnzd 12425 | . . . . . . . 8 ⊢ (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ) |
19 | 18 | znegcld 12428 | . . . . . . 7 ⊢ (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ) |
20 | rpexpcl 13801 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+) | |
21 | 15, 19, 20 | sylancr 587 | . . . . . 6 ⊢ (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+) |
22 | 21 | rpred 12772 | . . . . 5 ⊢ (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ) |
23 | 14, 22 | eqeltrd 2839 | . . . 4 ⊢ (𝑏 ∈ ℕ → (𝐹‘𝑏) ∈ ℝ) |
24 | 8, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹‘𝑏) ∈ ℝ) |
25 | 6, 24 | fsumrecl 15446 | . 2 ⊢ (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) ∈ ℝ) |
26 | 5, 25 | eqeltrd 2839 | 1 ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 -cneg 11206 ℕcn 11973 2c2 12028 ℤcz 12319 ℝ+crp 12730 ...cfz 13239 ↑cexp 13782 !cfa 13987 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-fac 13988 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 |
This theorem is referenced by: aaliou3lem7 25509 aaliou3lem9 25510 |
Copyright terms: Public domain | W3C validator |