Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsval Structured version   Visualization version   GIF version

Theorem vtsval 34604
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsval.l (𝜑𝐿:ℕ⟶ℂ)
Assertion
Ref Expression
vtsval (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem vtsval
Dummy variables 𝑙 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtsval.l . . . 4 (𝜑𝐿:ℕ⟶ℂ)
2 cnex 11109 . . . . 5 ℂ ∈ V
3 nnex 12152 . . . . 5 ℕ ∈ V
42, 3elmap 8805 . . . 4 (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ)
51, 4sylibr 234 . . 3 (𝜑𝐿 ∈ (ℂ ↑m ℕ))
6 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 fveq1 6825 . . . . . . 7 (𝑙 = 𝐿 → (𝑙𝑎) = (𝐿𝑎))
87oveq1d 7368 . . . . . 6 (𝑙 = 𝐿 → ((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
98sumeq2sdv 15628 . . . . 5 (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
109mpteq2dv 5189 . . . 4 (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
11 oveq2 7361 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
1211sumeq1d 15625 . . . . 5 (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
1312mpteq2dv 5189 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
14 df-vts 34603 . . . 4 vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
152mptex 7163 . . . 4 (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V
1610, 13, 14, 15ovmpo 7513 . . 3 ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
175, 6, 16syl2anc 584 . 2 (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
18 oveq2 7361 . . . . . . 7 (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋))
1918oveq2d 7369 . . . . . 6 (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋)))
2019fveq2d 6830 . . . . 5 (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))
2120oveq2d 7369 . . . 4 (𝑥 = 𝑋 → ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2221sumeq2sdv 15628 . . 3 (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
24 vtsval.x . 2 (𝜑𝑋 ∈ ℂ)
25 sumex 15613 . . 3 Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V
2625a1i 11 . 2 (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V)
2717, 23, 24, 26fvmptd 6941 1 (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  1c1 11029  ici 11030   · cmul 11033  cn 12146  2c2 12201  0cn0 12402  ...cfz 13428  Σcsu 15611  expce 15986  πcpi 15991  vtscvts 34602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-map 8762  df-nn 12147  df-seq 13927  df-sum 15612  df-vts 34603
This theorem is referenced by:  vtscl  34605  vtsprod  34606
  Copyright terms: Public domain W3C validator