![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vtsval | Structured version Visualization version GIF version |
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
Ref | Expression |
---|---|
vtsval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
vtsval.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
vtsval.l | ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) |
Ref | Expression |
---|---|
vtsval | ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtsval.l | . . . 4 ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) | |
2 | cnex 11187 | . . . . 5 ⊢ ℂ ∈ V | |
3 | nnex 12214 | . . . . 5 ⊢ ℕ ∈ V | |
4 | 2, 3 | elmap 8861 | . . . 4 ⊢ (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ) |
5 | 1, 4 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (ℂ ↑m ℕ)) |
6 | vtsval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | fveq1 6887 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → (𝑙‘𝑎) = (𝐿‘𝑎)) | |
8 | 7 | oveq1d 7419 | . . . . . 6 ⊢ (𝑙 = 𝐿 → ((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
9 | 8 | sumeq2sdv 15646 | . . . . 5 ⊢ (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
10 | 9 | mpteq2dv 5249 | . . . 4 ⊢ (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
11 | oveq2 7412 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
12 | 11 | sumeq1d 15643 | . . . . 5 ⊢ (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
13 | 12 | mpteq2dv 5249 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
14 | df-vts 33586 | . . . 4 ⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) | |
15 | 2 | mptex 7220 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V |
16 | 10, 13, 14, 15 | ovmpo 7563 | . . 3 ⊢ ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
17 | 5, 6, 16 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
18 | oveq2 7412 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋)) | |
19 | 18 | oveq2d 7420 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋))) |
20 | 19 | fveq2d 6892 | . . . . 5 ⊢ (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) |
21 | 20 | oveq2d 7420 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
22 | 21 | sumeq2sdv 15646 | . . 3 ⊢ (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
23 | 22 | adantl 483 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
24 | vtsval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
25 | sumex 15630 | . . 3 ⊢ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V | |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V) |
27 | 17, 23, 24, 26 | fvmptd 7001 | 1 ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ↦ cmpt 5230 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ↑m cmap 8816 ℂcc 11104 1c1 11107 ici 11108 · cmul 11111 ℕcn 12208 2c2 12263 ℕ0cn0 12468 ...cfz 13480 Σcsu 15628 expce 16001 πcpi 16006 vtscvts 33585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 df-sum 15629 df-vts 33586 |
This theorem is referenced by: vtscl 33588 vtsprod 33589 |
Copyright terms: Public domain | W3C validator |