Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsval Structured version   Visualization version   GIF version

Theorem vtsval 34616
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsval.l (𝜑𝐿:ℕ⟶ℂ)
Assertion
Ref Expression
vtsval (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem vtsval
Dummy variables 𝑙 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtsval.l . . . 4 (𝜑𝐿:ℕ⟶ℂ)
2 cnex 11267 . . . . 5 ℂ ∈ V
3 nnex 12301 . . . . 5 ℕ ∈ V
42, 3elmap 8931 . . . 4 (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ)
51, 4sylibr 234 . . 3 (𝜑𝐿 ∈ (ℂ ↑m ℕ))
6 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 fveq1 6921 . . . . . . 7 (𝑙 = 𝐿 → (𝑙𝑎) = (𝐿𝑎))
87oveq1d 7465 . . . . . 6 (𝑙 = 𝐿 → ((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
98sumeq2sdv 15753 . . . . 5 (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
109mpteq2dv 5268 . . . 4 (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
11 oveq2 7458 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
1211sumeq1d 15750 . . . . 5 (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
1312mpteq2dv 5268 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
14 df-vts 34615 . . . 4 vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
152mptex 7262 . . . 4 (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V
1610, 13, 14, 15ovmpo 7612 . . 3 ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
175, 6, 16syl2anc 583 . 2 (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
18 oveq2 7458 . . . . . . 7 (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋))
1918oveq2d 7466 . . . . . 6 (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋)))
2019fveq2d 6926 . . . . 5 (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))
2120oveq2d 7466 . . . 4 (𝑥 = 𝑋 → ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2221sumeq2sdv 15753 . . 3 (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
24 vtsval.x . 2 (𝜑𝑋 ∈ ℂ)
25 sumex 15738 . . 3 Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V
2625a1i 11 . 2 (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V)
2717, 23, 24, 26fvmptd 7038 1 (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  wf 6571  cfv 6575  (class class class)co 7450  m cmap 8886  cc 11184  1c1 11187  ici 11188   · cmul 11191  cn 12295  2c2 12350  0cn0 12555  ...cfz 13569  Σcsu 15736  expce 16111  πcpi 16116  vtscvts 34614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-1cn 11244  ax-addcl 11246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-map 8888  df-nn 12296  df-seq 14055  df-sum 15737  df-vts 34615
This theorem is referenced by:  vtscl  34617  vtsprod  34618
  Copyright terms: Public domain W3C validator