Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vtsval | Structured version Visualization version GIF version |
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
Ref | Expression |
---|---|
vtsval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
vtsval.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
vtsval.l | ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) |
Ref | Expression |
---|---|
vtsval | ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtsval.l | . . . 4 ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) | |
2 | cnex 10669 | . . . . 5 ⊢ ℂ ∈ V | |
3 | nnex 11693 | . . . . 5 ⊢ ℕ ∈ V | |
4 | 2, 3 | elmap 8466 | . . . 4 ⊢ (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ) |
5 | 1, 4 | sylibr 237 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (ℂ ↑m ℕ)) |
6 | vtsval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | fveq1 6662 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → (𝑙‘𝑎) = (𝐿‘𝑎)) | |
8 | 7 | oveq1d 7171 | . . . . . 6 ⊢ (𝑙 = 𝐿 → ((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
9 | 8 | sumeq2sdv 15122 | . . . . 5 ⊢ (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
10 | 9 | mpteq2dv 5132 | . . . 4 ⊢ (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
11 | oveq2 7164 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
12 | 11 | sumeq1d 15119 | . . . . 5 ⊢ (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
13 | 12 | mpteq2dv 5132 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
14 | df-vts 32147 | . . . 4 ⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) | |
15 | 2 | mptex 6983 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V |
16 | 10, 13, 14, 15 | ovmpo 7311 | . . 3 ⊢ ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
17 | 5, 6, 16 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
18 | oveq2 7164 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋)) | |
19 | 18 | oveq2d 7172 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋))) |
20 | 19 | fveq2d 6667 | . . . . 5 ⊢ (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) |
21 | 20 | oveq2d 7172 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
22 | 21 | sumeq2sdv 15122 | . . 3 ⊢ (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
23 | 22 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
24 | vtsval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
25 | sumex 15105 | . . 3 ⊢ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V | |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V) |
27 | 17, 23, 24, 26 | fvmptd 6771 | 1 ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ↦ cmpt 5116 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ↑m cmap 8422 ℂcc 10586 1c1 10589 ici 10590 · cmul 10593 ℕcn 11687 2c2 11742 ℕ0cn0 11947 ...cfz 12952 Σcsu 15103 expce 15476 πcpi 15481 vtscvts 32146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-seq 13432 df-sum 15104 df-vts 32147 |
This theorem is referenced by: vtscl 32149 vtsprod 32150 |
Copyright terms: Public domain | W3C validator |