Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsval Structured version   Visualization version   GIF version

Theorem vtsval 32596
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsval.l (𝜑𝐿:ℕ⟶ℂ)
Assertion
Ref Expression
vtsval (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem vtsval
Dummy variables 𝑙 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtsval.l . . . 4 (𝜑𝐿:ℕ⟶ℂ)
2 cnex 10936 . . . . 5 ℂ ∈ V
3 nnex 11962 . . . . 5 ℕ ∈ V
42, 3elmap 8633 . . . 4 (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ)
51, 4sylibr 233 . . 3 (𝜑𝐿 ∈ (ℂ ↑m ℕ))
6 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 fveq1 6767 . . . . . . 7 (𝑙 = 𝐿 → (𝑙𝑎) = (𝐿𝑎))
87oveq1d 7283 . . . . . 6 (𝑙 = 𝐿 → ((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
98sumeq2sdv 15397 . . . . 5 (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
109mpteq2dv 5180 . . . 4 (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
11 oveq2 7276 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
1211sumeq1d 15394 . . . . 5 (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
1312mpteq2dv 5180 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
14 df-vts 32595 . . . 4 vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
152mptex 7093 . . . 4 (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V
1610, 13, 14, 15ovmpo 7424 . . 3 ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
175, 6, 16syl2anc 583 . 2 (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
18 oveq2 7276 . . . . . . 7 (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋))
1918oveq2d 7284 . . . . . 6 (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋)))
2019fveq2d 6772 . . . . 5 (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))
2120oveq2d 7284 . . . 4 (𝑥 = 𝑋 → ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2221sumeq2sdv 15397 . . 3 (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
24 vtsval.x . 2 (𝜑𝑋 ∈ ℂ)
25 sumex 15380 . . 3 Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V
2625a1i 11 . 2 (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V)
2717, 23, 24, 26fvmptd 6876 1 (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  Vcvv 3430  cmpt 5161  wf 6426  cfv 6430  (class class class)co 7268  m cmap 8589  cc 10853  1c1 10856  ici 10857   · cmul 10860  cn 11956  2c2 12011  0cn0 12216  ...cfz 13221  Σcsu 15378  expce 15752  πcpi 15757  vtscvts 32594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-seq 13703  df-sum 15379  df-vts 32595
This theorem is referenced by:  vtscl  32597  vtsprod  32598
  Copyright terms: Public domain W3C validator