Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsval Structured version   Visualization version   GIF version

Theorem vtsval 34645
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsval.l (𝜑𝐿:ℕ⟶ℂ)
Assertion
Ref Expression
vtsval (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem vtsval
Dummy variables 𝑙 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtsval.l . . . 4 (𝜑𝐿:ℕ⟶ℂ)
2 cnex 11243 . . . . 5 ℂ ∈ V
3 nnex 12279 . . . . 5 ℕ ∈ V
42, 3elmap 8919 . . . 4 (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ)
51, 4sylibr 234 . . 3 (𝜑𝐿 ∈ (ℂ ↑m ℕ))
6 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 fveq1 6913 . . . . . . 7 (𝑙 = 𝐿 → (𝑙𝑎) = (𝐿𝑎))
87oveq1d 7453 . . . . . 6 (𝑙 = 𝐿 → ((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
98sumeq2sdv 15745 . . . . 5 (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
109mpteq2dv 5253 . . . 4 (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
11 oveq2 7446 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
1211sumeq1d 15742 . . . . 5 (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
1312mpteq2dv 5253 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
14 df-vts 34644 . . . 4 vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
152mptex 7250 . . . 4 (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V
1610, 13, 14, 15ovmpo 7600 . . 3 ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
175, 6, 16syl2anc 584 . 2 (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
18 oveq2 7446 . . . . . . 7 (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋))
1918oveq2d 7454 . . . . . 6 (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋)))
2019fveq2d 6918 . . . . 5 (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))
2120oveq2d 7454 . . . 4 (𝑥 = 𝑋 → ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2221sumeq2sdv 15745 . . 3 (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
24 vtsval.x . 2 (𝜑𝑋 ∈ ℂ)
25 sumex 15730 . . 3 Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V
2625a1i 11 . 2 (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V)
2717, 23, 24, 26fvmptd 7030 1 (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3481  cmpt 5234  wf 6565  cfv 6569  (class class class)co 7438  m cmap 8874  cc 11160  1c1 11163  ici 11164   · cmul 11167  cn 12273  2c2 12328  0cn0 12533  ...cfz 13553  Σcsu 15728  expce 16103  πcpi 16108  vtscvts 34643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-1cn 11220  ax-addcl 11222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-map 8876  df-nn 12274  df-seq 14049  df-sum 15729  df-vts 34644
This theorem is referenced by:  vtscl  34646  vtsprod  34647
  Copyright terms: Public domain W3C validator