Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vtsval | Structured version Visualization version GIF version |
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
Ref | Expression |
---|---|
vtsval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
vtsval.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
vtsval.l | ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) |
Ref | Expression |
---|---|
vtsval | ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtsval.l | . . . 4 ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) | |
2 | cnex 10936 | . . . . 5 ⊢ ℂ ∈ V | |
3 | nnex 11962 | . . . . 5 ⊢ ℕ ∈ V | |
4 | 2, 3 | elmap 8633 | . . . 4 ⊢ (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ) |
5 | 1, 4 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝐿 ∈ (ℂ ↑m ℕ)) |
6 | vtsval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | fveq1 6767 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → (𝑙‘𝑎) = (𝐿‘𝑎)) | |
8 | 7 | oveq1d 7283 | . . . . . 6 ⊢ (𝑙 = 𝐿 → ((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
9 | 8 | sumeq2sdv 15397 | . . . . 5 ⊢ (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
10 | 9 | mpteq2dv 5180 | . . . 4 ⊢ (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
11 | oveq2 7276 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
12 | 11 | sumeq1d 15394 | . . . . 5 ⊢ (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) |
13 | 12 | mpteq2dv 5180 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
14 | df-vts 32595 | . . . 4 ⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) | |
15 | 2 | mptex 7093 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V |
16 | 10, 13, 14, 15 | ovmpo 7424 | . . 3 ⊢ ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
17 | 5, 6, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) |
18 | oveq2 7276 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋)) | |
19 | 18 | oveq2d 7284 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋))) |
20 | 19 | fveq2d 6772 | . . . . 5 ⊢ (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) |
21 | 20 | oveq2d 7284 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
22 | 21 | sumeq2sdv 15397 | . . 3 ⊢ (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
23 | 22 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
24 | vtsval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
25 | sumex 15380 | . . 3 ⊢ Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V | |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V) |
27 | 17, 23, 24, 26 | fvmptd 6876 | 1 ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ↦ cmpt 5161 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 ℂcc 10853 1c1 10856 ici 10857 · cmul 10860 ℕcn 11956 2c2 12011 ℕ0cn0 12216 ...cfz 13221 Σcsu 15378 expce 15752 πcpi 15757 vtscvts 32594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-seq 13703 df-sum 15379 df-vts 32595 |
This theorem is referenced by: vtscl 32597 vtsprod 32598 |
Copyright terms: Public domain | W3C validator |