Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsval Structured version   Visualization version   GIF version

Theorem vtsval 34586
Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsval.l (𝜑𝐿:ℕ⟶ℂ)
Assertion
Ref Expression
vtsval (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎   𝑁,𝑎   𝑋,𝑎
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem vtsval
Dummy variables 𝑙 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtsval.l . . . 4 (𝜑𝐿:ℕ⟶ℂ)
2 cnex 11217 . . . . 5 ℂ ∈ V
3 nnex 12253 . . . . 5 ℕ ∈ V
42, 3elmap 8892 . . . 4 (𝐿 ∈ (ℂ ↑m ℕ) ↔ 𝐿:ℕ⟶ℂ)
51, 4sylibr 234 . . 3 (𝜑𝐿 ∈ (ℂ ↑m ℕ))
6 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 fveq1 6884 . . . . . . 7 (𝑙 = 𝐿 → (𝑙𝑎) = (𝐿𝑎))
87oveq1d 7427 . . . . . 6 (𝑙 = 𝐿 → ((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
98sumeq2sdv 15720 . . . . 5 (𝑙 = 𝐿 → Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
109mpteq2dv 5224 . . . 4 (𝑙 = 𝐿 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
11 oveq2 7420 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
1211sumeq1d 15717 . . . . 5 (𝑛 = 𝑁 → Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))
1312mpteq2dv 5224 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
14 df-vts 34585 . . . 4 vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
152mptex 7224 . . . 4 (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))) ∈ V
1610, 13, 14, 15ovmpo 7574 . . 3 ((𝐿 ∈ (ℂ ↑m ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
175, 6, 16syl2anc 584 . 2 (𝜑 → (𝐿vts𝑁) = (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
18 oveq2 7420 . . . . . . 7 (𝑥 = 𝑋 → (𝑎 · 𝑥) = (𝑎 · 𝑋))
1918oveq2d 7428 . . . . . 6 (𝑥 = 𝑋 → ((i · (2 · π)) · (𝑎 · 𝑥)) = ((i · (2 · π)) · (𝑎 · 𝑋)))
2019fveq2d 6889 . . . . 5 (𝑥 = 𝑋 → (exp‘((i · (2 · π)) · (𝑎 · 𝑥))) = (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))
2120oveq2d 7428 . . . 4 (𝑥 = 𝑋 → ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = ((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2221sumeq2sdv 15720 . . 3 (𝑥 = 𝑋 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
2322adantl 481 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
24 vtsval.x . 2 (𝜑𝑋 ∈ ℂ)
25 sumex 15705 . . 3 Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V
2625a1i 11 . 2 (𝜑 → Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))) ∈ V)
2717, 23, 24, 26fvmptd 7002 1 (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cmpt 5205  wf 6536  cfv 6540  (class class class)co 7412  m cmap 8847  cc 11134  1c1 11137  ici 11138   · cmul 11141  cn 12247  2c2 12302  0cn0 12508  ...cfz 13528  Σcsu 15703  expce 16078  πcpi 16083  vtscvts 34584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-1cn 11194  ax-addcl 11196
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-map 8849  df-nn 12248  df-seq 14024  df-sum 15704  df-vts 34585
This theorem is referenced by:  vtscl  34587  vtsprod  34588
  Copyright terms: Public domain W3C validator