Step | Hyp | Ref
| Expression |
1 | | fzfid 13934 |
. . . . . 6
β’ (π₯ β β+
β (1...(ββπ₯)) β Fin) |
2 | | elfznn 13526 |
. . . . . . . . . . . 12
β’ (π β
(1...(ββπ₯))
β π β
β) |
3 | 2 | adantl 482 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β π β
β) |
4 | | mucl 26634 |
. . . . . . . . . . 11
β’ (π β β β
(ΞΌβπ) β
β€) |
5 | 3, 4 | syl 17 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (ΞΌβπ)
β β€) |
6 | 5 | zred 12662 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (ΞΌβπ)
β β) |
7 | 6, 3 | nndivred 12262 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ) /
π) β
β) |
8 | 7 | recnd 11238 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ) /
π) β
β) |
9 | 2 | nnrpd 13010 |
. . . . . . . . . . 11
β’ (π β
(1...(ββπ₯))
β π β
β+) |
10 | | rpdivcl 12995 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ π β
β+) β (π₯ / π) β
β+) |
11 | 9, 10 | sylan2 593 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (π₯ / π) β
β+) |
12 | | relogcl 26075 |
. . . . . . . . . 10
β’ ((π₯ / π) β β+ β
(logβ(π₯ / π)) β
β) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (logβ(π₯ /
π)) β
β) |
14 | 13 | recnd 11238 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (logβ(π₯ /
π)) β
β) |
15 | 14 | sqcld 14105 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((logβ(π₯ /
π))β2) β
β) |
16 | 8, 15 | mulcld 11230 |
. . . . . 6
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
((logβ(π₯ / π))β2)) β
β) |
17 | 1, 16 | fsumcl 15675 |
. . . . 5
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β β) |
18 | | 2cn 12283 |
. . . . . . . . 9
β’ 2 β
β |
19 | 18 | a1i 11 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β 2 β β) |
20 | 19, 14 | mulcld 11230 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (2 Β· (logβ(π₯ / π))) β β) |
21 | 19, 20 | subcld 11567 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (2 β (2 Β· (logβ(π₯ / π)))) β β) |
22 | 8, 21 | mulcld 11230 |
. . . . . 6
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β· (2 β (2
Β· (logβ(π₯ /
π))))) β
β) |
23 | 1, 22 | fsumcl 15675 |
. . . . 5
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))) β
β) |
24 | | relogcl 26075 |
. . . . . . 7
β’ (π₯ β β+
β (logβπ₯) β
β) |
25 | 24 | recnd 11238 |
. . . . . 6
β’ (π₯ β β+
β (logβπ₯) β
β) |
26 | | mulcl 11190 |
. . . . . 6
β’ ((2
β β β§ (logβπ₯) β β) β (2 Β·
(logβπ₯)) β
β) |
27 | 18, 25, 26 | sylancr 587 |
. . . . 5
β’ (π₯ β β+
β (2 Β· (logβπ₯)) β β) |
28 | 17, 23, 27 | addsubd 11588 |
. . . 4
β’ (π₯ β β+
β ((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π)))))) β (2 Β·
(logβπ₯))) =
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) +
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
29 | | selberglem1.t |
. . . . . . . . 9
β’ π = ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π) |
30 | 29 | oveq2i 7416 |
. . . . . . . 8
β’
((ΞΌβπ)
Β· π) =
((ΞΌβπ) Β·
((((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) / π)) |
31 | 5 | zcnd 12663 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (ΞΌβπ)
β β) |
32 | 15, 21 | addcld 11229 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((logβ(π₯ /
π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) β
β) |
33 | 3 | nnrpd 13010 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β π β
β+) |
34 | 33 | rpcnne0d 13021 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (π β β
β§ π β
0)) |
35 | | divass 11886 |
. . . . . . . . . . 11
β’
(((ΞΌβπ)
β β β§ (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) β β β§
(π β β β§
π β 0)) β
(((ΞΌβπ) Β·
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π)))))) / π) = ((ΞΌβπ) Β· ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π))) |
36 | | div23 11887 |
. . . . . . . . . . 11
β’
(((ΞΌβπ)
β β β§ (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) β β β§
(π β β β§
π β 0)) β
(((ΞΌβπ) Β·
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π)))))) / π) = (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))) |
37 | 35, 36 | eqtr3d 2774 |
. . . . . . . . . 10
β’
(((ΞΌβπ)
β β β§ (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) β β β§
(π β β β§
π β 0)) β
((ΞΌβπ) Β·
((((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) / π)) = (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))) |
38 | 31, 32, 34, 37 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ)
Β· ((((logβ(π₯ /
π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) / π)) = (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))) |
39 | 8, 15, 21 | adddid 11234 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π)))))) =
((((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + (((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
40 | 38, 39 | eqtrd 2772 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ)
Β· ((((logβ(π₯ /
π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) / π)) = ((((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + (((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
41 | 30, 40 | eqtrid 2784 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ)
Β· π) =
((((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + (((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
42 | 41 | sumeq2dv 15645 |
. . . . . 6
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) = Ξ£π β (1...(ββπ₯))((((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + (((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
43 | 1, 16, 22 | fsumadd 15682 |
. . . . . 6
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))((((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + (((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π)))))) = (Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
44 | 42, 43 | eqtrd 2772 |
. . . . 5
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) = (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
45 | 44 | oveq1d 7420 |
. . . 4
β’ (π₯ β β+
β (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))) = ((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) + Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π)))))) β (2 Β·
(logβπ₯)))) |
46 | 18 | a1i 11 |
. . . . . . 7
β’ (π₯ β β+
β 2 β β) |
47 | 8, 14 | mulcld 11230 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
(logβ(π₯ / π))) β
β) |
48 | 8, 47 | subcld 11567 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) β
(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β β) |
49 | 1, 46, 48 | fsummulc2 15726 |
. . . . . 6
β’ (π₯ β β+
β (2 Β· Ξ£π
β (1...(ββπ₯))(((ΞΌβπ) / π) β (((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = Ξ£π β (1...(ββπ₯))(2 Β·
(((ΞΌβπ) / π) β (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))))) |
50 | 1, 8, 47 | fsumsub 15730 |
. . . . . . 7
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) β (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) = (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) |
51 | 50 | oveq2d 7421 |
. . . . . 6
β’ (π₯ β β+
β (2 Β· Ξ£π
β (1...(ββπ₯))(((ΞΌβπ) / π) β (((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = (2 Β· (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))))) |
52 | 19, 8 | mulcomd 11231 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (2 Β· ((ΞΌβπ) / π)) = (((ΞΌβπ) / π) Β· 2)) |
53 | 19, 8, 14 | mul12d 11419 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (2 Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) = (((ΞΌβπ) / π) Β· (2 Β· (logβ(π₯ / π))))) |
54 | 52, 53 | oveq12d 7423 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β ((2 Β· ((ΞΌβπ) / π)) β (2 Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = ((((ΞΌβπ) / π) Β· 2) β (((ΞΌβπ) / π) Β· (2 Β· (logβ(π₯ / π)))))) |
55 | 19, 8, 47 | subdid 11666 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (2 Β· (((ΞΌβπ) / π) β (((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = ((2 Β· ((ΞΌβπ) / π)) β (2 Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))))) |
56 | 8, 19, 20 | subdid 11666 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β· (2 β (2
Β· (logβ(π₯ /
π))))) =
((((ΞΌβπ) / π) Β· 2) β
(((ΞΌβπ) / π) Β· (2 Β·
(logβ(π₯ / π)))))) |
57 | 54, 55, 56 | 3eqtr4d 2782 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯)))
β (2 Β· (((ΞΌβπ) / π) β (((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = (((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π)))))) |
58 | 57 | sumeq2dv 15645 |
. . . . . 6
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))(2
Β· (((ΞΌβπ) /
π) β
(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π)))))) |
59 | 49, 51, 58 | 3eqtr3d 2780 |
. . . . 5
β’ (π₯ β β+
β (2 Β· (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π)))))) |
60 | 59 | oveq2d 7421 |
. . . 4
β’ (π₯ β β+
β ((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) + (2
Β· (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))))) = ((Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) +
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (2 β (2 Β·
(logβ(π₯ / π))))))) |
61 | 28, 45, 60 | 3eqtr4d 2782 |
. . 3
β’ (π₯ β β+
β (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))) = ((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) + (2
Β· (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))))) |
62 | 61 | mpteq2ia 5250 |
. 2
β’ (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))) = (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) + (2
Β· (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))))) |
63 | | ovexd 7440 |
. . . 4
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) β
V) |
64 | | ovexd 7440 |
. . . 4
β’
((β€ β§ π₯
β β+) β (2 Β· (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) β V) |
65 | | mulog2sum 27029 |
. . . . 5
β’ (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯)))) β
π(1) |
66 | 65 | a1i 11 |
. . . 4
β’ (β€
β (π₯ β
β+ β¦ (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯)))) β
π(1)) |
67 | | 2ex 12285 |
. . . . . 6
β’ 2 β
V |
68 | 67 | a1i 11 |
. . . . 5
β’
((β€ β§ π₯
β β+) β 2 β V) |
69 | | ovexd 7440 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β V) |
70 | | rpssre 12977 |
. . . . . . 7
β’
β+ β β |
71 | | o1const 15560 |
. . . . . . 7
β’
((β+ β β β§ 2 β β) β
(π₯ β
β+ β¦ 2) β π(1)) |
72 | 70, 18, 71 | mp2an 690 |
. . . . . 6
β’ (π₯ β β+
β¦ 2) β π(1) |
73 | 72 | a1i 11 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ 2) β π(1)) |
74 | | reex 11197 |
. . . . . . . . 9
β’ β
β V |
75 | 74, 70 | ssexi 5321 |
. . . . . . . 8
β’
β+ β V |
76 | 75 | a1i 11 |
. . . . . . 7
β’ (β€
β β+ β V) |
77 | | sumex 15630 |
. . . . . . . 8
β’
Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β V |
78 | 77 | a1i 11 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β V) |
79 | | sumex 15630 |
. . . . . . . 8
β’
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))) β V |
80 | 79 | a1i 11 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))) β V) |
81 | | eqidd 2733 |
. . . . . . 7
β’ (β€
β (π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π)) = (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π))) |
82 | | eqidd 2733 |
. . . . . . 7
β’ (β€
β (π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) = (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) |
83 | 76, 78, 80, 81, 82 | offval2 7686 |
. . . . . 6
β’ (β€
β ((π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π)) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))))) |
84 | | mudivsum 27022 |
. . . . . . 7
β’ (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π)) β π(1) |
85 | | mulogsum 27024 |
. . . . . . 7
β’ (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β π(1) |
86 | | o1sub 15556 |
. . . . . . 7
β’ (((π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π)) β π(1) β§ (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β π(1)) β ((π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π)) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) β π(1)) |
87 | 84, 85, 86 | mp2an 690 |
. . . . . 6
β’ ((π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π)) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) β π(1) |
88 | 83, 87 | eqeltrrdi 2842 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) β π(1)) |
89 | 68, 69, 73, 88 | o1mul2 15565 |
. . . 4
β’ (β€
β (π₯ β
β+ β¦ (2 Β· (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))))) β π(1)) |
90 | 63, 64, 66, 89 | o1add2 15564 |
. . 3
β’ (β€
β (π₯ β
β+ β¦ ((Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) + (2
Β· (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))))) β π(1)) |
91 | 90 | mptru 1548 |
. 2
β’ (π₯ β β+
β¦ ((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))) + (2
Β· (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))))) β π(1) |
92 | 62, 91 | eqeltri 2829 |
1
β’ (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))) β
π(1) |