Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem1 Structured version   Visualization version   GIF version

Theorem selberglem1 26221
 Description: Lemma for selberg 26224. Estimation of the asymptotic part of selberglem3 26223. (Contributed by Mario Carneiro, 20-May-2016.)
Hypothesis
Ref Expression
selberglem1.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
Assertion
Ref Expression
selberglem1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑛)

Proof of Theorem selberglem1
StepHypRef Expression
1 fzfid 13383 . . . . . 6 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
2 elfznn 12978 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
32adantl 486 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4 mucl 25818 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
53, 4syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
65zred 12119 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
76, 3nndivred 11721 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
87recnd 10700 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
92nnrpd 12463 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
10 rpdivcl 12448 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
119, 10sylan2 596 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
12 relogcl 25259 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1311, 12syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1413recnd 10700 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
1514sqcld 13551 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
168, 15mulcld 10692 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) ∈ ℂ)
171, 16fsumcl 15131 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) ∈ ℂ)
18 2cn 11742 . . . . . . . . 9 2 ∈ ℂ
1918a1i 11 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
2019, 14mulcld 10692 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℂ)
2119, 20subcld 11028 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
228, 21mulcld 10692 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
231, 22fsumcl 15131 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
24 relogcl 25259 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2524recnd 10700 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
26 mulcl 10652 . . . . . 6 ((2 ∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 · (log‘𝑥)) ∈ ℂ)
2718, 25, 26sylancr 591 . . . . 5 (𝑥 ∈ ℝ+ → (2 · (log‘𝑥)) ∈ ℂ)
2817, 23, 27addsubd 11049 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
29 selberglem1.t . . . . . . . . 9 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
3029oveq2i 7162 . . . . . . . 8 ((μ‘𝑛) · 𝑇) = ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛))
315zcnd 12120 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
3215, 21addcld 10691 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
333nnrpd 12463 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3433rpcnne0d 12474 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
35 divass 11347 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)))
36 div23 11348 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
3735, 36eqtr3d 2796 . . . . . . . . . 10 (((μ‘𝑛) ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
3831, 32, 34, 37syl3anc 1369 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
398, 15, 21adddid 10696 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4038, 39eqtrd 2794 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4130, 40syl5eq 2806 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · 𝑇) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4241sumeq2dv 15101 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
431, 16, 22fsumadd 15137 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4442, 43eqtrd 2794 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4544oveq1d 7166 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))) − (2 · (log‘𝑥))))
4618a1i 11 . . . . . . 7 (𝑥 ∈ ℝ+ → 2 ∈ ℂ)
478, 14mulcld 10692 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
488, 47subcld 11028 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
491, 46, 48fsummulc2 15180 . . . . . 6 (𝑥 ∈ ℝ+ → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
501, 8, 47fsumsub 15184 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
5150oveq2d 7167 . . . . . 6 (𝑥 ∈ ℝ+ → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
5219, 8mulcomd 10693 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((μ‘𝑛) / 𝑛)) = (((μ‘𝑛) / 𝑛) · 2))
5319, 8, 14mul12d 10880 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛)))))
5452, 53oveq12d 7169 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((μ‘𝑛) / 𝑛)) − (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = ((((μ‘𝑛) / 𝑛) · 2) − (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛))))))
5519, 8, 47subdid 11127 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = ((2 · ((μ‘𝑛) / 𝑛)) − (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
568, 19, 20subdid 11127 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))) = ((((μ‘𝑛) / 𝑛) · 2) − (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛))))))
5754, 55, 563eqtr4d 2804 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))))
5857sumeq2dv 15101 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))))
5949, 51, 583eqtr3d 2802 . . . . 5 (𝑥 ∈ ℝ+ → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))))
6059oveq2d 7167 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
6128, 45, 603eqtr4d 2804 . . 3 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))))
6261mpteq2ia 5124 . 2 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))))
63 ovexd 7186 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) ∈ V)
64 ovexd 7186 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ V)
65 mulog2sum 26213 . . . . 5 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
6665a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
67 2ex 11744 . . . . . 6 2 ∈ V
6867a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ V)
69 ovexd 7186 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ V)
70 rpssre 12430 . . . . . . 7 + ⊆ ℝ
71 o1const 15017 . . . . . . 7 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
7270, 18, 71mp2an 692 . . . . . 6 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
7372a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
74 reex 10659 . . . . . . . . 9 ℝ ∈ V
7574, 70ssexi 5193 . . . . . . . 8 + ∈ V
7675a1i 11 . . . . . . 7 (⊤ → ℝ+ ∈ V)
77 sumex 15085 . . . . . . . 8 Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ V
7877a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ V)
79 sumex 15085 . . . . . . . 8 Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ V
8079a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ V)
81 eqidd 2760 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)))
82 eqidd 2760 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
8376, 78, 80, 81, 82offval2 7425 . . . . . 6 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
84 mudivsum 26206 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
85 mulogsum 26208 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
86 o1sub 15013 . . . . . . 7 (((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
8784, 85, 86mp2an 692 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
8883, 87eqeltrrdi 2862 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
8968, 69, 73, 88o1mul2 15022 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) ∈ 𝑂(1))
9063, 64, 66, 89o1add2 15021 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) ∈ 𝑂(1))
9190mptru 1546 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) ∈ 𝑂(1)
9262, 91eqeltri 2849 1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 400   ∧ w3a 1085   = wceq 1539  ⊤wtru 1540   ∈ wcel 2112   ≠ wne 2952  Vcvv 3410   ⊆ wss 3859   ↦ cmpt 5113  ‘cfv 6336  (class class class)co 7151   ∘f cof 7404  ℂcc 10566  ℝcr 10567  0cc0 10568  1c1 10569   + caddc 10571   · cmul 10573   − cmin 10901   / cdiv 11328  ℕcn 11667  2c2 11722  ℤcz 12013  ℝ+crp 12423  ...cfz 12932  ⌊cfl 13202  ↑cexp 13472  𝑂(1)co1 14884  Σcsu 15083  logclog 25238  μcmu 25772 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-dju 9356  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-xnn0 12000  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ioc 12777  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-fl 13204  df-mod 13280  df-seq 13412  df-exp 13473  df-fac 13677  df-bc 13706  df-hash 13734  df-shft 14467  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-limsup 14869  df-clim 14886  df-rlim 14887  df-o1 14888  df-lo1 14889  df-sum 15084  df-ef 15462  df-e 15463  df-sin 15464  df-cos 15465  df-tan 15466  df-pi 15467  df-dvds 15649  df-gcd 15887  df-prm 16061  df-pc 16222  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-rest 16747  df-topn 16748  df-0g 16766  df-gsum 16767  df-topgen 16768  df-pt 16769  df-prds 16772  df-xrs 16826  df-qtop 16831  df-imas 16832  df-xps 16834  df-mre 16908  df-mrc 16909  df-acs 16911  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-mulg 18285  df-cntz 18507  df-cmn 18968  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-fbas 20156  df-fg 20157  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-lp 21829  df-perf 21830  df-cn 21920  df-cnp 21921  df-haus 22008  df-cmp 22080  df-tx 22255  df-hmeo 22448  df-fil 22539  df-fm 22631  df-flim 22632  df-flf 22633  df-xms 23015  df-ms 23016  df-tms 23017  df-cncf 23572  df-limc 24558  df-dv 24559  df-ulm 25064  df-log 25240  df-cxp 25241  df-atan 25545  df-em 25670  df-mu 25778 This theorem is referenced by:  selberglem2  26222
 Copyright terms: Public domain W3C validator