Proof of Theorem selberglem1
Step | Hyp | Ref
| Expression |
1 | | fzfid 13383 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (1...(⌊‘𝑥)) ∈ Fin) |
2 | | elfznn 12978 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
3 | 2 | adantl 486 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
4 | | mucl 25818 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(μ‘𝑛) ∈
ℤ) |
5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℤ) |
6 | 5 | zred 12119 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℝ) |
7 | 6, 3 | nndivred 11721 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℝ) |
8 | 7 | recnd 10700 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℂ) |
9 | 2 | nnrpd 12463 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
10 | | rpdivcl 12448 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
11 | 9, 10 | sylan2 596 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
12 | | relogcl 25259 |
. . . . . . . . . 10
⊢ ((𝑥 / 𝑛) ∈ ℝ+ →
(log‘(𝑥 / 𝑛)) ∈
ℝ) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℝ) |
14 | 13 | recnd 10700 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℂ) |
15 | 14 | sqcld 13551 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛))↑2) ∈
ℂ) |
16 | 8, 15 | mulcld 10692 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
((log‘(𝑥 / 𝑛))↑2)) ∈
ℂ) |
17 | 1, 16 | fsumcl 15131 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) ∈ ℂ) |
18 | | 2cn 11742 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 2 ∈ ℂ) |
20 | 19, 14 | mulcld 10692 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (log‘(𝑥 / 𝑛))) ∈ ℂ) |
21 | 19, 20 | subcld 11028 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
22 | 8, 21 | mulcld 10692 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · (2 − (2
· (log‘(𝑥 /
𝑛))))) ∈
ℂ) |
23 | 1, 22 | fsumcl 15131 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))) ∈
ℂ) |
24 | | relogcl 25259 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
25 | 24 | recnd 10700 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℂ) |
26 | | mulcl 10652 |
. . . . . 6
⊢ ((2
∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 ·
(log‘𝑥)) ∈
ℂ) |
27 | 18, 25, 26 | sylancr 591 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ (2 · (log‘𝑥)) ∈ ℂ) |
28 | 17, 23, 27 | addsubd 11049 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛)))))) − (2 ·
(log‘𝑥))) =
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) +
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
29 | | selberglem1.t |
. . . . . . . . 9
⊢ 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))) / 𝑛) |
30 | 29 | oveq2i 7162 |
. . . . . . . 8
⊢
((μ‘𝑛)
· 𝑇) =
((μ‘𝑛) ·
((((log‘(𝑥 / 𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛))))) / 𝑛)) |
31 | 5 | zcnd 12120 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℂ) |
32 | 15, 21 | addcld 10691 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛))))) ∈
ℂ) |
33 | 3 | nnrpd 12463 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
34 | 33 | rpcnne0d 12474 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
35 | | divass 11347 |
. . . . . . . . . . 11
⊢
(((μ‘𝑛)
∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))) ∈ ℂ ∧
(𝑛 ∈ ℂ ∧
𝑛 ≠ 0)) →
(((μ‘𝑛) ·
(((log‘(𝑥 / 𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛)))))) / 𝑛) = ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))) / 𝑛))) |
36 | | div23 11348 |
. . . . . . . . . . 11
⊢
(((μ‘𝑛)
∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))) ∈ ℂ ∧
(𝑛 ∈ ℂ ∧
𝑛 ≠ 0)) →
(((μ‘𝑛) ·
(((log‘(𝑥 / 𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛)))))) / 𝑛) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
37 | 35, 36 | eqtr3d 2796 |
. . . . . . . . . 10
⊢
(((μ‘𝑛)
∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))) ∈ ℂ ∧
(𝑛 ∈ ℂ ∧
𝑛 ≠ 0)) →
((μ‘𝑛) ·
((((log‘(𝑥 / 𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛))))) / 𝑛)) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
38 | 31, 32, 34, 37 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛)
· ((((log‘(𝑥 /
𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛))))) / 𝑛)) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
39 | 8, 15, 21 | adddid 10696 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
(((log‘(𝑥 / 𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛)))))) =
((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
40 | 38, 39 | eqtrd 2794 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛)
· ((((log‘(𝑥 /
𝑛))↑2) + (2 − (2
· (log‘(𝑥 /
𝑛))))) / 𝑛)) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
41 | 30, 40 | syl5eq 2806 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛)
· 𝑇) =
((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
42 | 41 | sumeq2dv 15101 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
43 | 1, 16, 22 | fsumadd 15137 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛)))))) = (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
44 | 42, 43 | eqtrd 2794 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
45 | 44 | oveq1d 7166 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛)))))) − (2 ·
(log‘𝑥)))) |
46 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 2 ∈ ℂ) |
47 | 8, 14 | mulcld 10692 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
(log‘(𝑥 / 𝑛))) ∈
ℂ) |
48 | 8, 47 | subcld 11028 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) −
(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
49 | 1, 46, 48 | fsummulc2 15180 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (2 · Σ𝑛
∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 ·
(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) |
50 | 1, 8, 47 | fsumsub 15184 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
51 | 50 | oveq2d 7167 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (2 · Σ𝑛
∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (2 · (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) |
52 | 19, 8 | mulcomd 10693 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · ((μ‘𝑛) / 𝑛)) = (((μ‘𝑛) / 𝑛) · 2)) |
53 | 19, 8, 14 | mul12d 10880 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛))))) |
54 | 52, 53 | oveq12d 7169 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((2 · ((μ‘𝑛) / 𝑛)) − (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = ((((μ‘𝑛) / 𝑛) · 2) − (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛)))))) |
55 | 19, 8, 47 | subdid 11127 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = ((2 · ((μ‘𝑛) / 𝑛)) − (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) |
56 | 8, 19, 20 | subdid 11127 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · (2 − (2
· (log‘(𝑥 /
𝑛))))) =
((((μ‘𝑛) / 𝑛) · 2) −
(((μ‘𝑛) / 𝑛) · (2 ·
(log‘(𝑥 / 𝑛)))))) |
57 | 54, 55, 56 | 3eqtr4d 2804 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛)))))) |
58 | 57 | sumeq2dv 15101 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))(2
· (((μ‘𝑛) /
𝑛) −
(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛)))))) |
59 | 49, 51, 58 | 3eqtr3d 2802 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛)))))) |
60 | 59 | oveq2d 7167 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) + (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) +
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 ·
(log‘(𝑥 / 𝑛))))))) |
61 | 28, 45, 60 | 3eqtr4d 2804 |
. . 3
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) + (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) |
62 | 61 | mpteq2ia 5124 |
. 2
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) + (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) |
63 | | ovexd 7186 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) ∈
V) |
64 | | ovexd 7186 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ V) |
65 | | mulog2sum 26213 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥)))) ∈
𝑂(1) |
66 | 65 | a1i 11 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥)))) ∈
𝑂(1)) |
67 | | 2ex 11744 |
. . . . . 6
⊢ 2 ∈
V |
68 | 67 | a1i 11 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 2 ∈ V) |
69 | | ovexd 7186 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ V) |
70 | | rpssre 12430 |
. . . . . . 7
⊢
ℝ+ ⊆ ℝ |
71 | | o1const 15017 |
. . . . . . 7
⊢
((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ 2) ∈ 𝑂(1)) |
72 | 70, 18, 71 | mp2an 692 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ 2) ∈ 𝑂(1) |
73 | 72 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ 2) ∈ 𝑂(1)) |
74 | | reex 10659 |
. . . . . . . . 9
⊢ ℝ
∈ V |
75 | 74, 70 | ssexi 5193 |
. . . . . . . 8
⊢
ℝ+ ∈ V |
76 | 75 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ℝ+ ∈ V) |
77 | | sumex 15085 |
. . . . . . . 8
⊢
Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ V |
78 | 77 | a1i 11 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ V) |
79 | | sumex 15085 |
. . . . . . . 8
⊢
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ V |
80 | 79 | a1i 11 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ V) |
81 | | eqidd 2760 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛))) |
82 | | eqidd 2760 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
83 | 76, 78, 80, 81, 82 | offval2 7425 |
. . . . . 6
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘f − (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) |
84 | | mudivsum 26206 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) |
85 | | mulogsum 26208 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1) |
86 | | o1sub 15013 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘f − (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)) |
87 | 84, 85, 86 | mp2an 692 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘f − (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1) |
88 | 83, 87 | eqeltrrdi 2862 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)) |
89 | 68, 69, 73, 88 | o1mul2 15022 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) ∈ 𝑂(1)) |
90 | 63, 64, 66, 89 | o1add2 15021 |
. . 3
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) + (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) ∈ 𝑂(1)) |
91 | 90 | mptru 1546 |
. 2
⊢ (𝑥 ∈ ℝ+
↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))) + (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) ∈ 𝑂(1) |
92 | 62, 91 | eqeltri 2849 |
1
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈
𝑂(1) |