MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem1 Structured version   Visualization version   GIF version

Theorem selberglem1 25455
Description: Lemma for selberg 25458. Estimation of the asymptotic part of selberglem3 25457. (Contributed by Mario Carneiro, 20-May-2016.)
Hypothesis
Ref Expression
selberglem1.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
Assertion
Ref Expression
selberglem1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑛)

Proof of Theorem selberglem1
StepHypRef Expression
1 fzfid 12980 . . . . . 6 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
2 elfznn 12577 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
32adantl 467 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4 mucl 25088 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
53, 4syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
65zred 11684 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
76, 3nndivred 11271 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
87recnd 10270 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
92nnrpd 12073 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
10 rpdivcl 12059 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
119, 10sylan2 580 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
12 relogcl 24543 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1311, 12syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1413recnd 10270 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
1514sqcld 13213 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
168, 15mulcld 10262 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) ∈ ℂ)
171, 16fsumcl 14672 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) ∈ ℂ)
18 2cn 11293 . . . . . . . . 9 2 ∈ ℂ
1918a1i 11 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
2019, 14mulcld 10262 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℂ)
2119, 20subcld 10594 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
228, 21mulcld 10262 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
231, 22fsumcl 14672 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
24 relogcl 24543 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2524recnd 10270 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
26 mulcl 10222 . . . . . 6 ((2 ∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 · (log‘𝑥)) ∈ ℂ)
2718, 25, 26sylancr 575 . . . . 5 (𝑥 ∈ ℝ+ → (2 · (log‘𝑥)) ∈ ℂ)
2817, 23, 27addsubd 10615 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
29 selberglem1.t . . . . . . . . 9 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
3029oveq2i 6804 . . . . . . . 8 ((μ‘𝑛) · 𝑇) = ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛))
315zcnd 11685 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
3215, 21addcld 10261 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
333nnrpd 12073 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3433rpcnne0d 12084 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
35 divass 10905 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)))
36 div23 10906 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
3735, 36eqtr3d 2807 . . . . . . . . . 10 (((μ‘𝑛) ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
3831, 32, 34, 37syl3anc 1476 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
398, 15, 21adddid 10266 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4038, 39eqtrd 2805 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4130, 40syl5eq 2817 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · 𝑇) = ((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4241sumeq2dv 14641 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
431, 16, 22fsumadd 14678 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4442, 43eqtrd 2805 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
4544oveq1d 6808 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))) − (2 · (log‘𝑥))))
4618a1i 11 . . . . . . . 8 (𝑥 ∈ ℝ+ → 2 ∈ ℂ)
478, 14mulcld 10262 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
488, 47subcld 10594 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
491, 46, 48fsummulc2 14723 . . . . . . 7 (𝑥 ∈ ℝ+ → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
501, 8, 47fsumsub 14727 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
5150oveq2d 6809 . . . . . . 7 (𝑥 ∈ ℝ+ → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
5249, 51eqtr3d 2807 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
5319, 8mulcomd 10263 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((μ‘𝑛) / 𝑛)) = (((μ‘𝑛) / 𝑛) · 2))
5419, 8, 14mul12d 10447 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛)))))
5553, 54oveq12d 6811 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((μ‘𝑛) / 𝑛)) − (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = ((((μ‘𝑛) / 𝑛) · 2) − (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛))))))
5619, 8, 47subdid 10688 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = ((2 · ((μ‘𝑛) / 𝑛)) − (2 · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
578, 19, 20subdid 10688 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))) = ((((μ‘𝑛) / 𝑛) · 2) − (((μ‘𝑛) / 𝑛) · (2 · (log‘(𝑥 / 𝑛))))))
5855, 56, 573eqtr4d 2815 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))))
5958sumeq2dv 14641 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) − (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))))
6052, 59eqtr3d 2807 . . . . 5 (𝑥 ∈ ℝ+ → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛))))))
6160oveq2d 6809 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (2 − (2 · (log‘(𝑥 / 𝑛)))))))
6228, 45, 613eqtr4d 2815 . . 3 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))))
6362mpteq2ia 4874 . 2 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))))
64 ovexd 6825 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) ∈ V)
65 ovexd 6825 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ V)
66 mulog2sum 25447 . . . . 5 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
6766a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
68 2ex 11294 . . . . . 6 2 ∈ V
6968a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ V)
70 ovexd 6825 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ V)
71 rpssre 12046 . . . . . . 7 + ⊆ ℝ
72 o1const 14558 . . . . . . 7 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
7371, 18, 72mp2an 672 . . . . . 6 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
7473a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
75 reex 10229 . . . . . . . . 9 ℝ ∈ V
7675, 71ssexi 4937 . . . . . . . 8 + ∈ V
7776a1i 11 . . . . . . 7 (⊤ → ℝ+ ∈ V)
78 sumex 14626 . . . . . . . 8 Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ V
7978a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ V)
80 sumex 14626 . . . . . . . 8 Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ V
8180a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ V)
82 eqidd 2772 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)))
83 eqidd 2772 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
8477, 79, 81, 82, 83offval2 7061 . . . . . 6 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))
85 mudivsum 25440 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
86 mulogsum 25442 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
87 o1sub 14554 . . . . . . 7 (((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
8885, 86, 87mp2an 672 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
8984, 88syl6eqelr 2859 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
9069, 70, 74, 89o1mul2 14563 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))) ∈ 𝑂(1))
9164, 65, 67, 90o1add2 14562 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) ∈ 𝑂(1))
9291trud 1641 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))) + (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))))) ∈ 𝑂(1)
9363, 92eqeltri 2846 1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 382  w3a 1071   = wceq 1631  wtru 1632  wcel 2145  wne 2943  Vcvv 3351  wss 3723  cmpt 4863  cfv 6031  (class class class)co 6793  𝑓 cof 7042  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  cz 11579  +crp 12035  ...cfz 12533  cfl 12799  cexp 13067  𝑂(1)co1 14425  Σcsu 14624  logclog 24522  μcmu 25042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-o1 14429  df-lo1 14430  df-sum 14625  df-ef 15004  df-e 15005  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-gcd 15425  df-prm 15593  df-pc 15749  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525  df-em 24940  df-mu 25048
This theorem is referenced by:  selberglem2  25456
  Copyright terms: Public domain W3C validator