Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem11 Structured version   Visualization version   GIF version

Theorem stoweidlem11 42303
Description: This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem11.1 (𝜑𝑁 ∈ ℕ)
stoweidlem11.2 (𝜑𝑡𝑇)
stoweidlem11.3 (𝜑𝑗 ∈ (1...𝑁))
stoweidlem11.4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
stoweidlem11.5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
stoweidlem11.6 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
stoweidlem11.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem11.8 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem11 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Distinct variable groups:   𝑖,𝑗   𝑡,𝑖,𝐸   𝑖,𝑁,𝑡   𝜑,𝑖   𝑡,𝑇   𝑡,𝑋
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝑇(𝑖,𝑗)   𝐸(𝑗)   𝑁(𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem stoweidlem11
StepHypRef Expression
1 stoweidlem11.2 . . 3 (𝜑𝑡𝑇)
2 sumex 15046 . . 3 Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V
3 eqid 2823 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
43fvmpt2 6781 . . 3 ((𝑡𝑇 ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
51, 2, 4sylancl 588 . 2 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
6 fzfid 13344 . . . 4 (𝜑 → (0...𝑁) ∈ Fin)
7 stoweidlem11.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
87rpred 12434 . . . . . 6 (𝜑𝐸 ∈ ℝ)
98adantr 483 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
10 stoweidlem11.4 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
111adantr 483 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑡𝑇)
1210, 11ffvelrnd 6854 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
139, 12remulcld 10673 . . . 4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
146, 13fsumrecl 15093 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
15 stoweidlem11.3 . . . . . . . . 9 (𝜑𝑗 ∈ (1...𝑁))
16 elfzuz 12907 . . . . . . . . 9 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ (ℤ‘1))
1715, 16syl 17 . . . . . . . 8 (𝜑𝑗 ∈ (ℤ‘1))
18 eluz2 12252 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
1917, 18sylib 220 . . . . . . 7 (𝜑 → (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
2019simp2d 1139 . . . . . 6 (𝜑𝑗 ∈ ℤ)
2120zred 12090 . . . . 5 (𝜑𝑗 ∈ ℝ)
228, 21remulcld 10673 . . . 4 (𝜑 → (𝐸 · 𝑗) ∈ ℝ)
23 stoweidlem11.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2423nnred 11655 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
2524, 21resubcld 11070 . . . . . 6 (𝜑 → (𝑁𝑗) ∈ ℝ)
26 1red 10644 . . . . . 6 (𝜑 → 1 ∈ ℝ)
2725, 26readdcld 10672 . . . . 5 (𝜑 → ((𝑁𝑗) + 1) ∈ ℝ)
288, 23nndivred 11694 . . . . . 6 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
298, 28remulcld 10673 . . . . 5 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
3027, 29remulcld 10673 . . . 4 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))) ∈ ℝ)
3122, 30readdcld 10672 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
32 3re 11720 . . . . . . 7 3 ∈ ℝ
3332a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
34 3ne0 11746 . . . . . . 7 3 ≠ 0
3534a1i 11 . . . . . 6 (𝜑 → 3 ≠ 0)
3633, 35rereccld 11469 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
3721, 36readdcld 10672 . . . 4 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
3837, 8remulcld 10673 . . 3 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
39 fzfid 13344 . . . . . 6 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
408adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝐸 ∈ ℝ)
41 elfzelz 12911 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℤ)
42 peano2zm 12028 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
4315, 41, 423syl 18 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℤ)
4423nnzd 12089 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4521, 26resubcld 11070 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ∈ ℝ)
4621lem1d 11575 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ≤ 𝑗)
47 elfzuz3 12908 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
48 eluzle 12259 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑗) → 𝑗𝑁)
4915, 47, 483syl 18 . . . . . . . . . . . 12 (𝜑𝑗𝑁)
5045, 21, 24, 46, 49letrd 10799 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ≤ 𝑁)
51 eluz2 12252 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑗 − 1)) ↔ ((𝑗 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑗 − 1) ≤ 𝑁))
5243, 44, 50, 51syl3anbrc 1339 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘(𝑗 − 1)))
53 fzss2 12950 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝑗 − 1)) → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5452, 53syl 17 . . . . . . . . 9 (𝜑 → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5554sselda 3969 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝑖 ∈ (0...𝑁))
5655, 12syldan 593 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
5740, 56remulcld 10673 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5839, 57fsumrecl 15093 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5958, 30readdcld 10672 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
6021ltm1d 11574 . . . . . . 7 (𝜑 → (𝑗 − 1) < 𝑗)
61 fzdisj 12937 . . . . . . 7 ((𝑗 − 1) < 𝑗 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
6260, 61syl 17 . . . . . 6 (𝜑 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
63 fzssp1 12953 . . . . . . . . . 10 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
6423nncnd 11656 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
65 1cnd 10638 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
6664, 65npcand 11003 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6766oveq2d 7174 . . . . . . . . . 10 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
6863, 67sseqtrid 4021 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
69 1zzd 12016 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
70 fzsubel 12946 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
7169, 44, 20, 69, 70syl22anc 836 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
7215, 71mpbid 234 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1)))
73 1m1e0 11712 . . . . . . . . . . 11 (1 − 1) = 0
7473oveq1i 7168 . . . . . . . . . 10 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
7572, 74eleqtrdi 2925 . . . . . . . . 9 (𝜑 → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
7668, 75sseldd 3970 . . . . . . . 8 (𝜑 → (𝑗 − 1) ∈ (0...𝑁))
77 fzsplit 12936 . . . . . . . 8 ((𝑗 − 1) ∈ (0...𝑁) → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7876, 77syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7920zcnd 12091 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
8079, 65npcand 11003 . . . . . . . . 9 (𝜑 → ((𝑗 − 1) + 1) = 𝑗)
8180oveq1d 7173 . . . . . . . 8 (𝜑 → (((𝑗 − 1) + 1)...𝑁) = (𝑗...𝑁))
8281uneq2d 4141 . . . . . . 7 (𝜑 → ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
8378, 82eqtrd 2858 . . . . . 6 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
847rpcnd 12436 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
8584adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℂ)
8612recnd 10671 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℂ)
8785, 86mulcld 10663 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
8862, 83, 6, 87fsumsplit 15099 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))))
89 fzfid 13344 . . . . . . 7 (𝜑 → (𝑗...𝑁) ∈ Fin)
908adantr 483 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
91 0zd 11996 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
92 0red 10646 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
93 0le1 11165 . . . . . . . . . . . . . . 15 0 ≤ 1
9493a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
9519simp3d 1140 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑗)
9692, 26, 21, 94, 95letrd 10799 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑗)
97 eluz2 12252 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
9891, 20, 96, 97syl3anbrc 1339 . . . . . . . . . . . 12 (𝜑𝑗 ∈ (ℤ‘0))
99 fzss1 12949 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘0) → (𝑗...𝑁) ⊆ (0...𝑁))
10098, 99syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗...𝑁) ⊆ (0...𝑁))
101100sselda 3969 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
102101, 10syldan 593 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
1031adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑡𝑇)
104102, 103ffvelrnd 6854 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
10590, 104remulcld 10673 . . . . . . 7 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
10689, 105fsumrecl 15093 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
107 eluzfz2 12918 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑗) → 𝑁 ∈ (𝑗...𝑁))
108 ne0i 4302 . . . . . . . . 9 (𝑁 ∈ (𝑗...𝑁) → (𝑗...𝑁) ≠ ∅)
10915, 47, 107, 1084syl 19 . . . . . . . 8 (𝜑 → (𝑗...𝑁) ≠ ∅)
11023adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℕ)
11190, 110nndivred 11694 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 / 𝑁) ∈ ℝ)
11290, 111remulcld 10673 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
113 stoweidlem11.6 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
1147rpgt0d 12437 . . . . . . . . . . 11 (𝜑 → 0 < 𝐸)
115114adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 0 < 𝐸)
116 ltmul2 11493 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ (𝐸 / 𝑁) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
117104, 111, 90, 115, 116syl112anc 1370 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
118113, 117mpbid 234 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁)))
11989, 109, 105, 112, 118fsumlt 15157 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)))
12023nnne0d 11690 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
12184, 64, 120divcld 11418 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑁) ∈ ℂ)
12284, 121mulcld 10663 . . . . . . . . 9 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℂ)
123 fsumconst 15147 . . . . . . . . 9 (((𝑗...𝑁) ∈ Fin ∧ (𝐸 · (𝐸 / 𝑁)) ∈ ℂ) → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
12489, 122, 123syl2anc 586 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
125 hashfz 13791 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑗) → (♯‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
12615, 47, 1253syl 18 . . . . . . . . 9 (𝜑 → (♯‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
127126oveq1d 7173 . . . . . . . 8 (𝜑 → ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
128124, 127eqtrd 2858 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
129119, 128breqtrd 5094 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
130106, 30, 58, 129ltadd2dd 10801 . . . . 5 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
13188, 130eqbrtrd 5090 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
132 stoweidlem11.5 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
13355, 132syldan 593 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ≤ 1)
134 1red 10644 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 1 ∈ ℝ)
135114adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 < 𝐸)
136 lemul2 11495 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
13756, 134, 40, 135, 136syl112anc 1370 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
138133, 137mpbid 234 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1))
13984mulid1d 10660 . . . . . . . . 9 (𝜑 → (𝐸 · 1) = 𝐸)
140139adantr 483 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · 1) = 𝐸)
141138, 140breqtrd 5094 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ 𝐸)
14239, 57, 40, 141fsumle 15156 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ Σ𝑖 ∈ (0...(𝑗 − 1))𝐸)
143 fsumconst 15147 . . . . . . . 8 (((0...(𝑗 − 1)) ∈ Fin ∧ 𝐸 ∈ ℂ) → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((♯‘(0...(𝑗 − 1))) · 𝐸))
14439, 84, 143syl2anc 586 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((♯‘(0...(𝑗 − 1))) · 𝐸))
145 0z 11995 . . . . . . . . . . 11 0 ∈ ℤ
146 1e0p1 12143 . . . . . . . . . . . . 13 1 = (0 + 1)
147146fveq2i 6675 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
14817, 147eleqtrdi 2925 . . . . . . . . . . 11 (𝜑𝑗 ∈ (ℤ‘(0 + 1)))
149 eluzp1m1 12271 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑗 ∈ (ℤ‘(0 + 1))) → (𝑗 − 1) ∈ (ℤ‘0))
150145, 148, 149sylancr 589 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ (ℤ‘0))
151 hashfz 13791 . . . . . . . . . 10 ((𝑗 − 1) ∈ (ℤ‘0) → (♯‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
152150, 151syl 17 . . . . . . . . 9 (𝜑 → (♯‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
15379, 65subcld 10999 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℂ)
154153subid1d 10988 . . . . . . . . . 10 (𝜑 → ((𝑗 − 1) − 0) = (𝑗 − 1))
155154oveq1d 7173 . . . . . . . . 9 (𝜑 → (((𝑗 − 1) − 0) + 1) = ((𝑗 − 1) + 1))
156152, 155, 803eqtrd 2862 . . . . . . . 8 (𝜑 → (♯‘(0...(𝑗 − 1))) = 𝑗)
157156oveq1d 7173 . . . . . . 7 (𝜑 → ((♯‘(0...(𝑗 − 1))) · 𝐸) = (𝑗 · 𝐸))
15879, 84mulcomd 10664 . . . . . . 7 (𝜑 → (𝑗 · 𝐸) = (𝐸 · 𝑗))
159144, 157, 1583eqtrd 2862 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = (𝐸 · 𝑗))
160142, 159breqtrd 5094 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 𝑗))
16158, 22, 30, 160leadd1dd 11256 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16214, 59, 31, 131, 161ltletrd 10802 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
1638, 8remulcld 10673 . . . . 5 (𝜑 → (𝐸 · 𝐸) ∈ ℝ)
16422, 163readdcld 10672 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) ∈ ℝ)
16564, 79subcld 10999 . . . . . . . 8 (𝜑 → (𝑁𝑗) ∈ ℂ)
166165, 65addcld 10662 . . . . . . 7 (𝜑 → ((𝑁𝑗) + 1) ∈ ℂ)
16784, 166, 121mul12d 10851 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
168167oveq2d 7174 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) = ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16927, 28remulcld 10673 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ∈ ℝ)
1708, 169remulcld 10673 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ∈ ℝ)
171166, 84, 64, 120div12d 11454 . . . . . . . 8 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) = (𝐸 · (((𝑁𝑗) + 1) / 𝑁)))
17226, 21resubcld 11070 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ∈ ℝ)
173 elfzle1 12913 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 1 ≤ 𝑗)
17415, 173syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑗)
17526, 21suble0d 11233 . . . . . . . . . . . . . . 15 (𝜑 → ((1 − 𝑗) ≤ 0 ↔ 1 ≤ 𝑗))
176174, 175mpbird 259 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ≤ 0)
177172, 92, 24, 176leadd2dd 11257 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) ≤ (𝑁 + 0))
17864, 65, 79addsub12d 11022 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + (1 − 𝑗)) = (1 + (𝑁𝑗)))
17965, 165addcomd 10844 . . . . . . . . . . . . . 14 (𝜑 → (1 + (𝑁𝑗)) = ((𝑁𝑗) + 1))
180178, 179eqtrd 2858 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) = ((𝑁𝑗) + 1))
18164addid1d 10842 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 0) = 𝑁)
182177, 180, 1813brtr3d 5099 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑗) + 1) ≤ 𝑁)
18323nngt0d 11689 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
184 lediv1 11507 . . . . . . . . . . . . 13 ((((𝑁𝑗) + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
18527, 24, 24, 183, 184syl112anc 1370 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
186182, 185mpbid 234 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁))
18764, 120dividd 11416 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑁) = 1)
188186, 187breqtrd 5094 . . . . . . . . . 10 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ 1)
18927, 23nndivred 11694 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ∈ ℝ)
190189, 26, 7lemul2d 12478 . . . . . . . . . 10 (𝜑 → ((((𝑁𝑗) + 1) / 𝑁) ≤ 1 ↔ (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1)))
191188, 190mpbid 234 . . . . . . . . 9 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1))
192191, 139breqtrd 5094 . . . . . . . 8 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ 𝐸)
193171, 192eqbrtrd 5090 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸)
194169, 8, 7lemul2d 12478 . . . . . . 7 (𝜑 → ((((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸 ↔ (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸)))
195193, 194mpbid 234 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸))
196170, 163, 22, 195leadd2dd 11257 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
197168, 196eqbrtrrd 5092 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
19884, 79mulcomd 10664 . . . . . . 7 (𝜑 → (𝐸 · 𝑗) = (𝑗 · 𝐸))
199198oveq1d 7173 . . . . . 6 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
20079, 84, 84adddird 10668 . . . . . 6 (𝜑 → ((𝑗 + 𝐸) · 𝐸) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
201199, 200eqtr4d 2861 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 + 𝐸) · 𝐸))
20221, 8readdcld 10672 . . . . . 6 (𝜑 → (𝑗 + 𝐸) ∈ ℝ)
203 stoweidlem11.8 . . . . . . 7 (𝜑𝐸 < (1 / 3))
2048, 36, 21, 203ltadd2dd 10801 . . . . . 6 (𝜑 → (𝑗 + 𝐸) < (𝑗 + (1 / 3)))
205202, 37, 7, 204ltmul1dd 12489 . . . . 5 (𝜑 → ((𝑗 + 𝐸) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
206201, 205eqbrtrd 5090 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) < ((𝑗 + (1 / 3)) · 𝐸))
20731, 164, 38, 197, 206lelttrd 10800 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) < ((𝑗 + (1 / 3)) · 𝐸))
20814, 31, 38, 162, 207lttrd 10803 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝑗 + (1 / 3)) · 𝐸))
2095, 208eqbrtrd 5090 1 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cun 3936  cin 3937  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  3c3 11696  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  chash 13693  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by:  stoweidlem34  42326
  Copyright terms: Public domain W3C validator