Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem11 Structured version   Visualization version   GIF version

Theorem stoweidlem11 46002
Description: This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem11.1 (𝜑𝑁 ∈ ℕ)
stoweidlem11.2 (𝜑𝑡𝑇)
stoweidlem11.3 (𝜑𝑗 ∈ (1...𝑁))
stoweidlem11.4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
stoweidlem11.5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
stoweidlem11.6 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
stoweidlem11.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem11.8 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem11 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Distinct variable groups:   𝑖,𝑗   𝑡,𝑖,𝐸   𝑖,𝑁,𝑡   𝜑,𝑖   𝑡,𝑇   𝑡,𝑋
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝑇(𝑖,𝑗)   𝐸(𝑗)   𝑁(𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem stoweidlem11
StepHypRef Expression
1 stoweidlem11.2 . . 3 (𝜑𝑡𝑇)
2 sumex 15630 . . 3 Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V
3 eqid 2729 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
43fvmpt2 6961 . . 3 ((𝑡𝑇 ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ V) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
51, 2, 4sylancl 586 . 2 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
6 fzfid 13914 . . . 4 (𝜑 → (0...𝑁) ∈ Fin)
7 stoweidlem11.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
87rpred 12971 . . . . . 6 (𝜑𝐸 ∈ ℝ)
98adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
10 stoweidlem11.4 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
111adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑡𝑇)
1210, 11ffvelcdmd 7039 . . . . 5 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
139, 12remulcld 11180 . . . 4 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
146, 13fsumrecl 15676 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
15 stoweidlem11.3 . . . . . . 7 (𝜑𝑗 ∈ (1...𝑁))
1615elfzelzd 13462 . . . . . 6 (𝜑𝑗 ∈ ℤ)
1716zred 12614 . . . . 5 (𝜑𝑗 ∈ ℝ)
188, 17remulcld 11180 . . . 4 (𝜑 → (𝐸 · 𝑗) ∈ ℝ)
19 stoweidlem11.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2019nnred 12177 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
2120, 17resubcld 11582 . . . . . 6 (𝜑 → (𝑁𝑗) ∈ ℝ)
22 1red 11151 . . . . . 6 (𝜑 → 1 ∈ ℝ)
2321, 22readdcld 11179 . . . . 5 (𝜑 → ((𝑁𝑗) + 1) ∈ ℝ)
248, 19nndivred 12216 . . . . . 6 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
258, 24remulcld 11180 . . . . 5 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
2623, 25remulcld 11180 . . . 4 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))) ∈ ℝ)
2718, 26readdcld 11179 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
28 3re 12242 . . . . . . 7 3 ∈ ℝ
2928a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
30 3ne0 12268 . . . . . . 7 3 ≠ 0
3130a1i 11 . . . . . 6 (𝜑 → 3 ≠ 0)
3229, 31rereccld 11985 . . . . 5 (𝜑 → (1 / 3) ∈ ℝ)
3317, 32readdcld 11179 . . . 4 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
3433, 8remulcld 11180 . . 3 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
35 fzfid 13914 . . . . . 6 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
368adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝐸 ∈ ℝ)
37 elfzelz 13461 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℤ)
38 peano2zm 12552 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
3915, 37, 383syl 18 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℤ)
4019nnzd 12532 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4117, 22resubcld 11582 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ∈ ℝ)
4217lem1d 12092 . . . . . . . . . . . 12 (𝜑 → (𝑗 − 1) ≤ 𝑗)
43 elfzuz3 13458 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝑗))
44 eluzle 12782 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑗) → 𝑗𝑁)
4515, 43, 443syl 18 . . . . . . . . . . . 12 (𝜑𝑗𝑁)
4641, 17, 20, 42, 45letrd 11307 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ≤ 𝑁)
47 eluz2 12775 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑗 − 1)) ↔ ((𝑗 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑗 − 1) ≤ 𝑁))
4839, 40, 46, 47syl3anbrc 1344 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘(𝑗 − 1)))
49 fzss2 13501 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝑗 − 1)) → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5048, 49syl 17 . . . . . . . . 9 (𝜑 → (0...(𝑗 − 1)) ⊆ (0...𝑁))
5150sselda 3943 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 𝑖 ∈ (0...𝑁))
5251, 12syldan 591 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
5336, 52remulcld 11180 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5435, 53fsumrecl 15676 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
5554, 26readdcld 11179 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ∈ ℝ)
5617ltm1d 12091 . . . . . . 7 (𝜑 → (𝑗 − 1) < 𝑗)
57 fzdisj 13488 . . . . . . 7 ((𝑗 − 1) < 𝑗 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
5856, 57syl 17 . . . . . 6 (𝜑 → ((0...(𝑗 − 1)) ∩ (𝑗...𝑁)) = ∅)
59 fzssp1 13504 . . . . . . . . . 10 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
6019nncnd 12178 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
61 1cnd 11145 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
6260, 61npcand 11513 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6362oveq2d 7385 . . . . . . . . . 10 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
6459, 63sseqtrid 3986 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
65 1zzd 12540 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
66 fzsubel 13497 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑗 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
6765, 40, 16, 65, 66syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1))))
6815, 67mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ ((1 − 1)...(𝑁 − 1)))
69 1m1e0 12234 . . . . . . . . . . 11 (1 − 1) = 0
7069oveq1i 7379 . . . . . . . . . 10 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
7168, 70eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝑗 − 1) ∈ (0...(𝑁 − 1)))
7264, 71sseldd 3944 . . . . . . . 8 (𝜑 → (𝑗 − 1) ∈ (0...𝑁))
73 fzsplit 13487 . . . . . . . 8 ((𝑗 − 1) ∈ (0...𝑁) → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7472, 73syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)))
7516zcnd 12615 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
7675, 61npcand 11513 . . . . . . . . 9 (𝜑 → ((𝑗 − 1) + 1) = 𝑗)
7776oveq1d 7384 . . . . . . . 8 (𝜑 → (((𝑗 − 1) + 1)...𝑁) = (𝑗...𝑁))
7877uneq2d 4127 . . . . . . 7 (𝜑 → ((0...(𝑗 − 1)) ∪ (((𝑗 − 1) + 1)...𝑁)) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
7974, 78eqtrd 2764 . . . . . 6 (𝜑 → (0...𝑁) = ((0...(𝑗 − 1)) ∪ (𝑗...𝑁)))
807rpcnd 12973 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
8180adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℂ)
8212recnd 11178 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℂ)
8381, 82mulcld 11170 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
8458, 79, 6, 83fsumsplit 15683 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))))
85 fzfid 13914 . . . . . . 7 (𝜑 → (𝑗...𝑁) ∈ Fin)
868adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝐸 ∈ ℝ)
87 0zd 12517 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
88 0red 11153 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
89 0le1 11677 . . . . . . . . . . . . . . 15 0 ≤ 1
9089a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 1)
91 elfzuz 13457 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ (ℤ‘1))
9215, 91syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑗 ∈ (ℤ‘1))
93 eluz2 12775 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
9492, 93sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
9594simp3d 1144 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑗)
9688, 22, 17, 90, 95letrd 11307 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑗)
97 eluz2 12775 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
9887, 16, 96, 97syl3anbrc 1344 . . . . . . . . . . . 12 (𝜑𝑗 ∈ (ℤ‘0))
99 fzss1 13500 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘0) → (𝑗...𝑁) ⊆ (0...𝑁))
10098, 99syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗...𝑁) ⊆ (0...𝑁))
101100sselda 3943 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑖 ∈ (0...𝑁))
102101, 10syldan 591 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
1031adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑡𝑇)
104102, 103ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
10586, 104remulcld 11180 . . . . . . 7 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
10685, 105fsumrecl 15676 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
107 eluzfz2 13469 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑗) → 𝑁 ∈ (𝑗...𝑁))
108 ne0i 4300 . . . . . . . . 9 (𝑁 ∈ (𝑗...𝑁) → (𝑗...𝑁) ≠ ∅)
10915, 43, 107, 1084syl 19 . . . . . . . 8 (𝜑 → (𝑗...𝑁) ≠ ∅)
11019adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 𝑁 ∈ ℕ)
11186, 110nndivred 12216 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 / 𝑁) ∈ ℝ)
11286, 111remulcld 11180 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · (𝐸 / 𝑁)) ∈ ℝ)
113 stoweidlem11.6 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → ((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁))
1147rpgt0d 12974 . . . . . . . . . . 11 (𝜑 → 0 < 𝐸)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑗...𝑁)) → 0 < 𝐸)
116 ltmul2 12009 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ (𝐸 / 𝑁) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
117104, 111, 86, 115, 116syl112anc 1376 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (((𝑋𝑖)‘𝑡) < (𝐸 / 𝑁) ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁))))
118113, 117mpbid 232 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑗...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑡)) < (𝐸 · (𝐸 / 𝑁)))
11985, 109, 105, 112, 118fsumlt 15742 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)))
12019nnne0d 12212 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
12180, 60, 120divcld 11934 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑁) ∈ ℂ)
12280, 121mulcld 11170 . . . . . . . . 9 (𝜑 → (𝐸 · (𝐸 / 𝑁)) ∈ ℂ)
123 fsumconst 15732 . . . . . . . . 9 (((𝑗...𝑁) ∈ Fin ∧ (𝐸 · (𝐸 / 𝑁)) ∈ ℂ) → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
12485, 122, 123syl2anc 584 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))))
125 hashfz 14368 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑗) → (♯‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
12615, 43, 1253syl 18 . . . . . . . . 9 (𝜑 → (♯‘(𝑗...𝑁)) = ((𝑁𝑗) + 1))
127126oveq1d 7384 . . . . . . . 8 (𝜑 → ((♯‘(𝑗...𝑁)) · (𝐸 · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
128124, 127eqtrd 2764 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · (𝐸 / 𝑁)) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
129119, 128breqtrd 5128 . . . . . 6 (𝜑 → Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
130106, 26, 54, 129ltadd2dd 11309 . . . . 5 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + Σ𝑖 ∈ (𝑗...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
13184, 130eqbrtrd 5124 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
132 stoweidlem11.5 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑡) ≤ 1)
13351, 132syldan 591 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → ((𝑋𝑖)‘𝑡) ≤ 1)
134 1red 11151 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 1 ∈ ℝ)
135114adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 < 𝐸)
136 lemul2 12011 . . . . . . . . . 10 ((((𝑋𝑖)‘𝑡) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
13752, 134, 36, 135, 136syl112anc 1376 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (((𝑋𝑖)‘𝑡) ≤ 1 ↔ (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1)))
138133, 137mpbid 232 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 1))
13980mulridd 11167 . . . . . . . . 9 (𝜑 → (𝐸 · 1) = 𝐸)
140139adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · 1) = 𝐸)
141138, 140breqtrd 5128 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ≤ 𝐸)
14235, 53, 36, 141fsumle 15741 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ Σ𝑖 ∈ (0...(𝑗 − 1))𝐸)
143 fsumconst 15732 . . . . . . . 8 (((0...(𝑗 − 1)) ∈ Fin ∧ 𝐸 ∈ ℂ) → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((♯‘(0...(𝑗 − 1))) · 𝐸))
14435, 80, 143syl2anc 584 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = ((♯‘(0...(𝑗 − 1))) · 𝐸))
145 0z 12516 . . . . . . . . . . 11 0 ∈ ℤ
146 1e0p1 12667 . . . . . . . . . . . . 13 1 = (0 + 1)
147146fveq2i 6843 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
14892, 147eleqtrdi 2838 . . . . . . . . . . 11 (𝜑𝑗 ∈ (ℤ‘(0 + 1)))
149 eluzp1m1 12795 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑗 ∈ (ℤ‘(0 + 1))) → (𝑗 − 1) ∈ (ℤ‘0))
150145, 148, 149sylancr 587 . . . . . . . . . 10 (𝜑 → (𝑗 − 1) ∈ (ℤ‘0))
151 hashfz 14368 . . . . . . . . . 10 ((𝑗 − 1) ∈ (ℤ‘0) → (♯‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
152150, 151syl 17 . . . . . . . . 9 (𝜑 → (♯‘(0...(𝑗 − 1))) = (((𝑗 − 1) − 0) + 1))
15375, 61subcld 11509 . . . . . . . . . . 11 (𝜑 → (𝑗 − 1) ∈ ℂ)
154153subid1d 11498 . . . . . . . . . 10 (𝜑 → ((𝑗 − 1) − 0) = (𝑗 − 1))
155154oveq1d 7384 . . . . . . . . 9 (𝜑 → (((𝑗 − 1) − 0) + 1) = ((𝑗 − 1) + 1))
156152, 155, 763eqtrd 2768 . . . . . . . 8 (𝜑 → (♯‘(0...(𝑗 − 1))) = 𝑗)
157156oveq1d 7384 . . . . . . 7 (𝜑 → ((♯‘(0...(𝑗 − 1))) · 𝐸) = (𝑗 · 𝐸))
15875, 80mulcomd 11171 . . . . . . 7 (𝜑 → (𝑗 · 𝐸) = (𝐸 · 𝑗))
159144, 157, 1583eqtrd 2768 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))𝐸 = (𝐸 · 𝑗))
160142, 159breqtrd 5128 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) ≤ (𝐸 · 𝑗))
16154, 18, 26, 160leadd1dd 11768 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝑗 − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16214, 55, 27, 131, 161ltletrd 11310 . . 3 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
1638, 8remulcld 11180 . . . . 5 (𝜑 → (𝐸 · 𝐸) ∈ ℝ)
16418, 163readdcld 11179 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) ∈ ℝ)
16560, 75subcld 11509 . . . . . . . 8 (𝜑 → (𝑁𝑗) ∈ ℂ)
166165, 61addcld 11169 . . . . . . 7 (𝜑 → ((𝑁𝑗) + 1) ∈ ℂ)
16780, 166, 121mul12d 11359 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) = (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁))))
168167oveq2d 7385 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) = ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))))
16923, 24remulcld 11180 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ∈ ℝ)
1708, 169remulcld 11180 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ∈ ℝ)
171166, 80, 60, 120div12d 11970 . . . . . . . 8 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) = (𝐸 · (((𝑁𝑗) + 1) / 𝑁)))
17222, 17resubcld 11582 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ∈ ℝ)
173 elfzle1 13464 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑁) → 1 ≤ 𝑗)
17415, 173syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑗)
17522, 17suble0d 11745 . . . . . . . . . . . . . . 15 (𝜑 → ((1 − 𝑗) ≤ 0 ↔ 1 ≤ 𝑗))
176174, 175mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑗) ≤ 0)
177172, 88, 20, 176leadd2dd 11769 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) ≤ (𝑁 + 0))
17860, 61, 75addsub12d 11532 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + (1 − 𝑗)) = (1 + (𝑁𝑗)))
17961, 165addcomd 11352 . . . . . . . . . . . . . 14 (𝜑 → (1 + (𝑁𝑗)) = ((𝑁𝑗) + 1))
180178, 179eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 − 𝑗)) = ((𝑁𝑗) + 1))
18160addridd 11350 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 0) = 𝑁)
182177, 180, 1813brtr3d 5133 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑗) + 1) ≤ 𝑁)
18319nngt0d 12211 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
184 lediv1 12024 . . . . . . . . . . . . 13 ((((𝑁𝑗) + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
18523, 20, 20, 183, 184syl112anc 1376 . . . . . . . . . . . 12 (𝜑 → (((𝑁𝑗) + 1) ≤ 𝑁 ↔ (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁)))
186182, 185mpbid 232 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ (𝑁 / 𝑁))
18760, 120dividd 11932 . . . . . . . . . . 11 (𝜑 → (𝑁 / 𝑁) = 1)
188186, 187breqtrd 5128 . . . . . . . . . 10 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ≤ 1)
18923, 19nndivred 12216 . . . . . . . . . . 11 (𝜑 → (((𝑁𝑗) + 1) / 𝑁) ∈ ℝ)
190189, 22, 7lemul2d 13015 . . . . . . . . . 10 (𝜑 → ((((𝑁𝑗) + 1) / 𝑁) ≤ 1 ↔ (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1)))
191188, 190mpbid 232 . . . . . . . . 9 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ (𝐸 · 1))
192191, 139breqtrd 5128 . . . . . . . 8 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) / 𝑁)) ≤ 𝐸)
193171, 192eqbrtrd 5124 . . . . . . 7 (𝜑 → (((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸)
194169, 8, 7lemul2d 13015 . . . . . . 7 (𝜑 → ((((𝑁𝑗) + 1) · (𝐸 / 𝑁)) ≤ 𝐸 ↔ (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸)))
195193, 194mpbid 232 . . . . . 6 (𝜑 → (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁))) ≤ (𝐸 · 𝐸))
196170, 163, 18, 195leadd2dd 11769 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · (((𝑁𝑗) + 1) · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
197168, 196eqbrtrrd 5126 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) ≤ ((𝐸 · 𝑗) + (𝐸 · 𝐸)))
19880, 75mulcomd 11171 . . . . . . 7 (𝜑 → (𝐸 · 𝑗) = (𝑗 · 𝐸))
199198oveq1d 7384 . . . . . 6 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
20075, 80, 80adddird 11175 . . . . . 6 (𝜑 → ((𝑗 + 𝐸) · 𝐸) = ((𝑗 · 𝐸) + (𝐸 · 𝐸)))
201199, 200eqtr4d 2767 . . . . 5 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) = ((𝑗 + 𝐸) · 𝐸))
20217, 8readdcld 11179 . . . . . 6 (𝜑 → (𝑗 + 𝐸) ∈ ℝ)
203 stoweidlem11.8 . . . . . . 7 (𝜑𝐸 < (1 / 3))
2048, 32, 17, 203ltadd2dd 11309 . . . . . 6 (𝜑 → (𝑗 + 𝐸) < (𝑗 + (1 / 3)))
205202, 33, 7, 204ltmul1dd 13026 . . . . 5 (𝜑 → ((𝑗 + 𝐸) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
206201, 205eqbrtrd 5124 . . . 4 (𝜑 → ((𝐸 · 𝑗) + (𝐸 · 𝐸)) < ((𝑗 + (1 / 3)) · 𝐸))
20727, 164, 34, 197, 206lelttrd 11308 . . 3 (𝜑 → ((𝐸 · 𝑗) + (((𝑁𝑗) + 1) · (𝐸 · (𝐸 / 𝑁)))) < ((𝑗 + (1 / 3)) · 𝐸))
20814, 27, 34, 162, 207lttrd 11311 . 2 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) < ((𝑗 + (1 / 3)) · 𝐸))
2095, 208eqbrtrd 5124 1 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  3c3 12218  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  chash 14271  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by:  stoweidlem34  46025
  Copyright terms: Public domain W3C validator