Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsplypnf Structured version   Visualization version   GIF version

Theorem signsplypnf 34548
Description: The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsplypnf.g 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
Assertion
Ref Expression
signsplypnf (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem signsplypnf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 plyf 26110 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
21ffnd 6692 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐹 Fn ℂ)
3 ovex 7423 . . . . . 6 (𝑥𝐷) ∈ V
43rgenw 3049 . . . . 5 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
5 signsplypnf.g . . . . . 6 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
65fnmpt 6661 . . . . 5 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → 𝐺 Fn ℝ+)
74, 6mp1i 13 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐺 Fn ℝ+)
8 cnex 11156 . . . . 5 ℂ ∈ V
98a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℂ ∈ V)
10 reex 11166 . . . . . 6 ℝ ∈ V
11 rpssre 12966 . . . . . 6 + ⊆ ℝ
1210, 11ssexi 5280 . . . . 5 + ∈ V
1312a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ∈ V)
14 ax-resscn 11132 . . . . . 6 ℝ ⊆ ℂ
1511, 14sstri 3959 . . . . 5 + ⊆ ℂ
16 sseqin2 4189 . . . . 5 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
1715, 16mpbi 230 . . . 4 (ℂ ∩ ℝ+) = ℝ+
18 signsply0.c . . . . 5 𝐶 = (coeff‘𝐹)
19 signsply0.d . . . . 5 𝐷 = (deg‘𝐹)
2018, 19coeid2 26151 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)))
215fvmpt2 6982 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ (𝑥𝐷) ∈ V) → (𝐺𝑥) = (𝑥𝐷))
223, 21mpan2 691 . . . . 5 (𝑥 ∈ ℝ+ → (𝐺𝑥) = (𝑥𝐷))
2322adantl 481 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐺𝑥) = (𝑥𝐷))
242, 7, 9, 13, 17, 20, 23offval 7665 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
25 fzfid 13945 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) ∈ Fin)
2615a1i 11 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℂ)
2726sselda 3949 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
28 dgrcl 26145 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2919, 28eqeltrid 2833 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℕ0)
3029adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℕ0)
3127, 30expcld 14118 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
3218coef3 26144 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℂ)
3332ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐶:ℕ0⟶ℂ)
34 elfznn0 13588 . . . . . . . . 9 (𝑘 ∈ (0...𝐷) → 𝑘 ∈ ℕ0)
3534adantl 481 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑘 ∈ ℕ0)
3633, 35ffvelcdmd 7060 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝐶𝑘) ∈ ℂ)
3727adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ∈ ℂ)
3837, 35expcld 14118 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝑘) ∈ ℂ)
3936, 38mulcld 11201 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → ((𝐶𝑘) · (𝑥𝑘)) ∈ ℂ)
40 rpne0 12975 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
4140adantl 481 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
4229nn0zd 12562 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℤ)
4342adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
4427, 41, 43expne0d 14124 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
4525, 31, 39, 44fsumdivc 15759 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))
46 fzosn 13704 . . . . . . . . 9 (𝐷 ∈ ℤ → (𝐷..^(𝐷 + 1)) = {𝐷})
4746ineq2d 4186 . . . . . . . 8 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ((0..^𝐷) ∩ {𝐷}))
48 fzodisj 13661 . . . . . . . 8 ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ∅
4947, 48eqtr3di 2780 . . . . . . 7 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ {𝐷}) = ∅)
5043, 49syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((0..^𝐷) ∩ {𝐷}) = ∅)
51 fzval3 13702 . . . . . . . . 9 (𝐷 ∈ ℤ → (0...𝐷) = (0..^(𝐷 + 1)))
5242, 51syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = (0..^(𝐷 + 1)))
53 nn0uz 12842 . . . . . . . . . 10 0 = (ℤ‘0)
5429, 53eleqtrdi 2839 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ (ℤ‘0))
55 fzosplitsn 13743 . . . . . . . . 9 (𝐷 ∈ (ℤ‘0) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5654, 55syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5752, 56eqtrd 2765 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5857adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5931adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ∈ ℂ)
6041adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ≠ 0)
6143adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐷 ∈ ℤ)
6237, 60, 61expne0d 14124 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ≠ 0)
6339, 59, 62divcld 11965 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ ℂ)
6450, 58, 25, 63fsumsplit 15714 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6545, 64eqtrd 2765 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6665mpteq2dva 5203 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
6724, 66eqtrd 2765 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
68 sumex 15661 . . . . 5 Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
6968a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
70 sumex 15661 . . . . 5 Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7170a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7211a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℝ)
73 fzofi 13946 . . . . . . 7 (0..^𝐷) ∈ Fin
7473a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (0..^𝐷) ∈ Fin)
75 ovexd 7425 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0..^𝐷))) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7632ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐶:ℕ0⟶ℂ)
77 elfzonn0 13675 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝐷) → 𝑘 ∈ ℕ0)
7877ad2antlr 727 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℕ0)
7976, 78ffvelcdmd 7060 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ ℂ)
8027adantlr 715 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8180, 78expcld 14118 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑘) ∈ ℂ)
8231adantlr 715 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
8340adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
8443adantlr 715 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
8580, 83, 84expne0d 14124 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
8679, 81, 82, 85divassd 12000 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷))))
8786mpteq2dva 5203 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))))
88 fvexd 6876 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ V)
89 ovexd 7425 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑘) / (𝑥𝐷)) ∈ V)
9032adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐶:ℕ0⟶ℂ)
9177adantl 481 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℕ0)
9290, 91ffvelcdmd 7060 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐶𝑘) ∈ ℂ)
93 rlimconst 15517 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (𝐶𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9411, 92, 93sylancr 587 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9578nn0zd 12562 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℤ)
9684, 95zsubcld 12650 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐷𝑘) ∈ ℤ)
9780, 83, 96cxpexpzd 26627 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐷𝑘)) = (𝑥↑(𝐷𝑘)))
9897oveq2d 7406 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (1 / (𝑥↑(𝐷𝑘))))
9980, 83, 96expnegd 14125 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (1 / (𝑥↑(𝐷𝑘))))
10084zcnd 12646 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℂ)
10178nn0cnd 12512 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℂ)
102100, 101negsubdi2d 11556 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → -(𝐷𝑘) = (𝑘𝐷))
103102oveq2d 7406 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (𝑥↑(𝑘𝐷)))
10498, 99, 1033eqtr2d 2771 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (𝑥↑(𝑘𝐷)))
10580, 83, 84, 95expsubd 14129 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑(𝑘𝐷)) = ((𝑥𝑘) / (𝑥𝐷)))
106104, 105eqtrd 2765 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = ((𝑥𝑘) / (𝑥𝐷)))
107106mpteq2dva 5203 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) = (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))))
10891nn0red 12511 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℝ)
10929adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℕ0)
110109nn0red 12511 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℝ)
111 elfzolt2 13636 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐷) → 𝑘 < 𝐷)
112111adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 < 𝐷)
113 difrp 12998 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑘 < 𝐷 ↔ (𝐷𝑘) ∈ ℝ+))
114113biimpa 476 . . . . . . . . . . . 12 (((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑘 < 𝐷) → (𝐷𝑘) ∈ ℝ+)
115108, 110, 112, 114syl21anc 837 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐷𝑘) ∈ ℝ+)
116 cxplim 26889 . . . . . . . . . . 11 ((𝐷𝑘) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
117115, 116syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
118107, 117eqbrtrrd 5134 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))) ⇝𝑟 0)
11988, 89, 94, 118rlimmul 15618 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 ((𝐶𝑘) · 0))
12092mul01d 11380 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → ((𝐶𝑘) · 0) = 0)
121119, 120breqtrd 5136 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 0)
12287, 121eqbrtrd 5132 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12372, 74, 75, 122fsumrlim 15784 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 Σ𝑘 ∈ (0..^𝐷)0)
12474olcd 874 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin))
125 sumz 15695 . . . . . 6 (((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
126124, 125syl 17 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
127123, 126breqtrd 5136 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12832, 29ffvelcdmd 7060 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → (𝐶𝐷) ∈ ℂ)
129128adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐶𝐷) ∈ ℂ)
130129, 31mulcld 11201 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐶𝐷) · (𝑥𝐷)) ∈ ℂ)
131130, 31, 44divcld 11965 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ)
132 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐶𝑘) = (𝐶𝐷))
133 oveq2 7398 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝑥𝑘) = (𝑥𝐷))
134132, 133oveq12d 7408 . . . . . . . . . 10 (𝑘 = 𝐷 → ((𝐶𝑘) · (𝑥𝑘)) = ((𝐶𝐷) · (𝑥𝐷)))
135134oveq1d 7405 . . . . . . . . 9 (𝑘 = 𝐷 → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
136135sumsn 15719 . . . . . . . 8 ((𝐷 ∈ ℕ0 ∧ (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
13730, 131, 136syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
138129, 31, 44divcan4d 11971 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) = (𝐶𝐷))
139137, 138eqtrd 2765 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (𝐶𝐷))
140139mpteq2dva 5203 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)))
141 rlimconst 15517 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (𝐶𝐷) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
14211, 128, 141sylancr 587 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
143140, 142eqbrtrd 5132 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 (𝐶𝐷))
14469, 71, 127, 143rlimadd 15616 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 (0 + (𝐶𝐷)))
145128addlidd 11382 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = (𝐶𝐷))
146 signsply0.b . . . 4 𝐵 = (𝐶𝐷)
147145, 146eqtr4di 2783 . . 3 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = 𝐵)
148144, 147breqtrd 5136 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 𝐵)
14967, 148eqbrtrd 5132 1 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cmpt 5191   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  ..^cfzo 13622  cexp 14033  𝑟 crli 15458  Σcsu 15659  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-0p 25578  df-limc 25774  df-dv 25775  df-ply 26100  df-coe 26102  df-dgr 26103  df-log 26472  df-cxp 26473
This theorem is referenced by:  signsply0  34549
  Copyright terms: Public domain W3C validator