Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsplypnf Structured version   Visualization version   GIF version

Theorem signsplypnf 31930
Description: The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsplypnf.g 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
Assertion
Ref Expression
signsplypnf (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem signsplypnf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 plyf 24795 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
21ffnd 6488 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐹 Fn ℂ)
3 ovex 7168 . . . . . 6 (𝑥𝐷) ∈ V
43rgenw 3118 . . . . 5 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
5 signsplypnf.g . . . . . 6 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
65fnmpt 6460 . . . . 5 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → 𝐺 Fn ℝ+)
74, 6mp1i 13 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐺 Fn ℝ+)
8 cnex 10607 . . . . 5 ℂ ∈ V
98a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℂ ∈ V)
10 reex 10617 . . . . . 6 ℝ ∈ V
11 rpssre 12384 . . . . . 6 + ⊆ ℝ
1210, 11ssexi 5190 . . . . 5 + ∈ V
1312a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ∈ V)
14 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
1511, 14sstri 3924 . . . . 5 + ⊆ ℂ
16 sseqin2 4142 . . . . 5 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
1715, 16mpbi 233 . . . 4 (ℂ ∩ ℝ+) = ℝ+
18 signsply0.c . . . . 5 𝐶 = (coeff‘𝐹)
19 signsply0.d . . . . 5 𝐷 = (deg‘𝐹)
2018, 19coeid2 24836 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)))
215fvmpt2 6756 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ (𝑥𝐷) ∈ V) → (𝐺𝑥) = (𝑥𝐷))
223, 21mpan2 690 . . . . 5 (𝑥 ∈ ℝ+ → (𝐺𝑥) = (𝑥𝐷))
2322adantl 485 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐺𝑥) = (𝑥𝐷))
242, 7, 9, 13, 17, 20, 23offval 7396 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
25 fzfid 13336 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) ∈ Fin)
2615a1i 11 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℂ)
2726sselda 3915 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
28 dgrcl 24830 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2919, 28eqeltrid 2894 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℕ0)
3029adantr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℕ0)
3127, 30expcld 13506 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
3218coef3 24829 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℂ)
3332ad2antrr 725 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐶:ℕ0⟶ℂ)
34 elfznn0 12995 . . . . . . . . 9 (𝑘 ∈ (0...𝐷) → 𝑘 ∈ ℕ0)
3534adantl 485 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑘 ∈ ℕ0)
3633, 35ffvelrnd 6829 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝐶𝑘) ∈ ℂ)
3727adantr 484 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ∈ ℂ)
3837, 35expcld 13506 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝑘) ∈ ℂ)
3936, 38mulcld 10650 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → ((𝐶𝑘) · (𝑥𝑘)) ∈ ℂ)
40 rpne0 12393 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
4140adantl 485 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
4229nn0zd 12073 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℤ)
4342adantr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
4427, 41, 43expne0d 13512 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
4525, 31, 39, 44fsumdivc 15133 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))
46 fzodisj 13066 . . . . . . . 8 ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ∅
47 fzosn 13103 . . . . . . . . 9 (𝐷 ∈ ℤ → (𝐷..^(𝐷 + 1)) = {𝐷})
4847ineq2d 4139 . . . . . . . 8 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ((0..^𝐷) ∩ {𝐷}))
4946, 48syl5reqr 2848 . . . . . . 7 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ {𝐷}) = ∅)
5043, 49syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((0..^𝐷) ∩ {𝐷}) = ∅)
51 fzval3 13101 . . . . . . . . 9 (𝐷 ∈ ℤ → (0...𝐷) = (0..^(𝐷 + 1)))
5242, 51syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = (0..^(𝐷 + 1)))
53 nn0uz 12268 . . . . . . . . . 10 0 = (ℤ‘0)
5429, 53eleqtrdi 2900 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ (ℤ‘0))
55 fzosplitsn 13140 . . . . . . . . 9 (𝐷 ∈ (ℤ‘0) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5654, 55syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5752, 56eqtrd 2833 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5857adantr 484 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5931adantr 484 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ∈ ℂ)
6041adantr 484 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ≠ 0)
6143adantr 484 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐷 ∈ ℤ)
6237, 60, 61expne0d 13512 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ≠ 0)
6339, 59, 62divcld 11405 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ ℂ)
6450, 58, 25, 63fsumsplit 15089 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6545, 64eqtrd 2833 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6665mpteq2dva 5125 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
6724, 66eqtrd 2833 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
68 sumex 15036 . . . . 5 Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
6968a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
70 sumex 15036 . . . . 5 Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7170a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7211a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℝ)
73 fzofi 13337 . . . . . . 7 (0..^𝐷) ∈ Fin
7473a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (0..^𝐷) ∈ Fin)
75 ovexd 7170 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0..^𝐷))) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7632ad2antrr 725 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐶:ℕ0⟶ℂ)
77 elfzonn0 13077 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝐷) → 𝑘 ∈ ℕ0)
7877ad2antlr 726 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℕ0)
7976, 78ffvelrnd 6829 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ ℂ)
8027adantlr 714 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8180, 78expcld 13506 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑘) ∈ ℂ)
8231adantlr 714 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
8340adantl 485 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
8443adantlr 714 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
8580, 83, 84expne0d 13512 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
8679, 81, 82, 85divassd 11440 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷))))
8786mpteq2dva 5125 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))))
88 fvexd 6660 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ V)
89 ovexd 7170 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑘) / (𝑥𝐷)) ∈ V)
9032adantr 484 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐶:ℕ0⟶ℂ)
9177adantl 485 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℕ0)
9290, 91ffvelrnd 6829 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐶𝑘) ∈ ℂ)
93 rlimconst 14893 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (𝐶𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9411, 92, 93sylancr 590 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9578nn0zd 12073 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℤ)
9684, 95zsubcld 12080 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐷𝑘) ∈ ℤ)
9780, 83, 96cxpexpzd 25302 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐷𝑘)) = (𝑥↑(𝐷𝑘)))
9897oveq2d 7151 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (1 / (𝑥↑(𝐷𝑘))))
9980, 83, 96expnegd 13513 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (1 / (𝑥↑(𝐷𝑘))))
10084zcnd 12076 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℂ)
10178nn0cnd 11945 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℂ)
102100, 101negsubdi2d 11002 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → -(𝐷𝑘) = (𝑘𝐷))
103102oveq2d 7151 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (𝑥↑(𝑘𝐷)))
10498, 99, 1033eqtr2d 2839 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (𝑥↑(𝑘𝐷)))
10580, 83, 84, 95expsubd 13517 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑(𝑘𝐷)) = ((𝑥𝑘) / (𝑥𝐷)))
106104, 105eqtrd 2833 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = ((𝑥𝑘) / (𝑥𝐷)))
107106mpteq2dva 5125 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) = (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))))
10891nn0red 11944 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℝ)
10929adantr 484 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℕ0)
110109nn0red 11944 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℝ)
111 elfzolt2 13042 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐷) → 𝑘 < 𝐷)
112111adantl 485 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 < 𝐷)
113 difrp 12415 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑘 < 𝐷 ↔ (𝐷𝑘) ∈ ℝ+))
114113biimpa 480 . . . . . . . . . . . 12 (((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑘 < 𝐷) → (𝐷𝑘) ∈ ℝ+)
115108, 110, 112, 114syl21anc 836 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐷𝑘) ∈ ℝ+)
116 cxplim 25557 . . . . . . . . . . 11 ((𝐷𝑘) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
117115, 116syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
118107, 117eqbrtrrd 5054 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))) ⇝𝑟 0)
11988, 89, 94, 118rlimmul 14993 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 ((𝐶𝑘) · 0))
12092mul01d 10828 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → ((𝐶𝑘) · 0) = 0)
121119, 120breqtrd 5056 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 0)
12287, 121eqbrtrd 5052 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12372, 74, 75, 122fsumrlim 15158 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 Σ𝑘 ∈ (0..^𝐷)0)
12474olcd 871 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin))
125 sumz 15071 . . . . . 6 (((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
126124, 125syl 17 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
127123, 126breqtrd 5056 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12832, 29ffvelrnd 6829 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → (𝐶𝐷) ∈ ℂ)
129128adantr 484 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐶𝐷) ∈ ℂ)
130129, 31mulcld 10650 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐶𝐷) · (𝑥𝐷)) ∈ ℂ)
131130, 31, 44divcld 11405 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ)
132 fveq2 6645 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐶𝑘) = (𝐶𝐷))
133 oveq2 7143 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝑥𝑘) = (𝑥𝐷))
134132, 133oveq12d 7153 . . . . . . . . . 10 (𝑘 = 𝐷 → ((𝐶𝑘) · (𝑥𝑘)) = ((𝐶𝐷) · (𝑥𝐷)))
135134oveq1d 7150 . . . . . . . . 9 (𝑘 = 𝐷 → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
136135sumsn 15093 . . . . . . . 8 ((𝐷 ∈ ℕ0 ∧ (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
13730, 131, 136syl2anc 587 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
138129, 31, 44divcan4d 11411 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) = (𝐶𝐷))
139137, 138eqtrd 2833 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (𝐶𝐷))
140139mpteq2dva 5125 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)))
141 rlimconst 14893 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (𝐶𝐷) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
14211, 128, 141sylancr 590 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
143140, 142eqbrtrd 5052 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 (𝐶𝐷))
14469, 71, 127, 143rlimadd 14991 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 (0 + (𝐶𝐷)))
145128addid2d 10830 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = (𝐶𝐷))
146 signsply0.b . . . 4 𝐵 = (𝐶𝐷)
147145, 146eqtr4di 2851 . . 3 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = 𝐵)
148144, 147breqtrd 5056 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 𝐵)
14967, 148eqbrtrd 5052 1 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  ..^cfzo 13028  cexp 13425  𝑟 crli 14834  Σcsu 15034  Polycply 24781  coeffccoe 24783  degcdgr 24784  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-0p 24274  df-limc 24469  df-dv 24470  df-ply 24785  df-coe 24787  df-dgr 24788  df-log 25148  df-cxp 25149
This theorem is referenced by:  signsply0  31931
  Copyright terms: Public domain W3C validator