Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsplypnf Structured version   Visualization version   GIF version

Theorem signsplypnf 34565
Description: The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsplypnf.g 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
Assertion
Ref Expression
signsplypnf (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem signsplypnf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 plyf 26237 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
21ffnd 6737 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐹 Fn ℂ)
3 ovex 7464 . . . . . 6 (𝑥𝐷) ∈ V
43rgenw 3065 . . . . 5 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
5 signsplypnf.g . . . . . 6 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
65fnmpt 6708 . . . . 5 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → 𝐺 Fn ℝ+)
74, 6mp1i 13 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐺 Fn ℝ+)
8 cnex 11236 . . . . 5 ℂ ∈ V
98a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℂ ∈ V)
10 reex 11246 . . . . . 6 ℝ ∈ V
11 rpssre 13042 . . . . . 6 + ⊆ ℝ
1210, 11ssexi 5322 . . . . 5 + ∈ V
1312a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ∈ V)
14 ax-resscn 11212 . . . . . 6 ℝ ⊆ ℂ
1511, 14sstri 3993 . . . . 5 + ⊆ ℂ
16 sseqin2 4223 . . . . 5 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
1715, 16mpbi 230 . . . 4 (ℂ ∩ ℝ+) = ℝ+
18 signsply0.c . . . . 5 𝐶 = (coeff‘𝐹)
19 signsply0.d . . . . 5 𝐷 = (deg‘𝐹)
2018, 19coeid2 26278 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)))
215fvmpt2 7027 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ (𝑥𝐷) ∈ V) → (𝐺𝑥) = (𝑥𝐷))
223, 21mpan2 691 . . . . 5 (𝑥 ∈ ℝ+ → (𝐺𝑥) = (𝑥𝐷))
2322adantl 481 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐺𝑥) = (𝑥𝐷))
242, 7, 9, 13, 17, 20, 23offval 7706 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
25 fzfid 14014 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) ∈ Fin)
2615a1i 11 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℂ)
2726sselda 3983 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
28 dgrcl 26272 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2919, 28eqeltrid 2845 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℕ0)
3029adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℕ0)
3127, 30expcld 14186 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
3218coef3 26271 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℂ)
3332ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐶:ℕ0⟶ℂ)
34 elfznn0 13660 . . . . . . . . 9 (𝑘 ∈ (0...𝐷) → 𝑘 ∈ ℕ0)
3534adantl 481 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑘 ∈ ℕ0)
3633, 35ffvelcdmd 7105 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝐶𝑘) ∈ ℂ)
3727adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ∈ ℂ)
3837, 35expcld 14186 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝑘) ∈ ℂ)
3936, 38mulcld 11281 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → ((𝐶𝑘) · (𝑥𝑘)) ∈ ℂ)
40 rpne0 13051 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
4140adantl 481 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
4229nn0zd 12639 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℤ)
4342adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
4427, 41, 43expne0d 14192 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
4525, 31, 39, 44fsumdivc 15822 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))
46 fzosn 13775 . . . . . . . . 9 (𝐷 ∈ ℤ → (𝐷..^(𝐷 + 1)) = {𝐷})
4746ineq2d 4220 . . . . . . . 8 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ((0..^𝐷) ∩ {𝐷}))
48 fzodisj 13733 . . . . . . . 8 ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ∅
4947, 48eqtr3di 2792 . . . . . . 7 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ {𝐷}) = ∅)
5043, 49syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((0..^𝐷) ∩ {𝐷}) = ∅)
51 fzval3 13773 . . . . . . . . 9 (𝐷 ∈ ℤ → (0...𝐷) = (0..^(𝐷 + 1)))
5242, 51syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = (0..^(𝐷 + 1)))
53 nn0uz 12920 . . . . . . . . . 10 0 = (ℤ‘0)
5429, 53eleqtrdi 2851 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ (ℤ‘0))
55 fzosplitsn 13814 . . . . . . . . 9 (𝐷 ∈ (ℤ‘0) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5654, 55syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5752, 56eqtrd 2777 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5857adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5931adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ∈ ℂ)
6041adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ≠ 0)
6143adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐷 ∈ ℤ)
6237, 60, 61expne0d 14192 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ≠ 0)
6339, 59, 62divcld 12043 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ ℂ)
6450, 58, 25, 63fsumsplit 15777 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6545, 64eqtrd 2777 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6665mpteq2dva 5242 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
6724, 66eqtrd 2777 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
68 sumex 15724 . . . . 5 Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
6968a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
70 sumex 15724 . . . . 5 Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7170a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7211a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℝ)
73 fzofi 14015 . . . . . . 7 (0..^𝐷) ∈ Fin
7473a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (0..^𝐷) ∈ Fin)
75 ovexd 7466 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0..^𝐷))) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7632ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐶:ℕ0⟶ℂ)
77 elfzonn0 13747 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝐷) → 𝑘 ∈ ℕ0)
7877ad2antlr 727 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℕ0)
7976, 78ffvelcdmd 7105 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ ℂ)
8027adantlr 715 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8180, 78expcld 14186 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑘) ∈ ℂ)
8231adantlr 715 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
8340adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
8443adantlr 715 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
8580, 83, 84expne0d 14192 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
8679, 81, 82, 85divassd 12078 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷))))
8786mpteq2dva 5242 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))))
88 fvexd 6921 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ V)
89 ovexd 7466 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑘) / (𝑥𝐷)) ∈ V)
9032adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐶:ℕ0⟶ℂ)
9177adantl 481 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℕ0)
9290, 91ffvelcdmd 7105 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐶𝑘) ∈ ℂ)
93 rlimconst 15580 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (𝐶𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9411, 92, 93sylancr 587 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9578nn0zd 12639 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℤ)
9684, 95zsubcld 12727 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐷𝑘) ∈ ℤ)
9780, 83, 96cxpexpzd 26753 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐷𝑘)) = (𝑥↑(𝐷𝑘)))
9897oveq2d 7447 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (1 / (𝑥↑(𝐷𝑘))))
9980, 83, 96expnegd 14193 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (1 / (𝑥↑(𝐷𝑘))))
10084zcnd 12723 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℂ)
10178nn0cnd 12589 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℂ)
102100, 101negsubdi2d 11636 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → -(𝐷𝑘) = (𝑘𝐷))
103102oveq2d 7447 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (𝑥↑(𝑘𝐷)))
10498, 99, 1033eqtr2d 2783 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (𝑥↑(𝑘𝐷)))
10580, 83, 84, 95expsubd 14197 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑(𝑘𝐷)) = ((𝑥𝑘) / (𝑥𝐷)))
106104, 105eqtrd 2777 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = ((𝑥𝑘) / (𝑥𝐷)))
107106mpteq2dva 5242 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) = (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))))
10891nn0red 12588 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℝ)
10929adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℕ0)
110109nn0red 12588 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℝ)
111 elfzolt2 13708 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐷) → 𝑘 < 𝐷)
112111adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 < 𝐷)
113 difrp 13073 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑘 < 𝐷 ↔ (𝐷𝑘) ∈ ℝ+))
114113biimpa 476 . . . . . . . . . . . 12 (((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑘 < 𝐷) → (𝐷𝑘) ∈ ℝ+)
115108, 110, 112, 114syl21anc 838 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐷𝑘) ∈ ℝ+)
116 cxplim 27015 . . . . . . . . . . 11 ((𝐷𝑘) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
117115, 116syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
118107, 117eqbrtrrd 5167 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))) ⇝𝑟 0)
11988, 89, 94, 118rlimmul 15681 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 ((𝐶𝑘) · 0))
12092mul01d 11460 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → ((𝐶𝑘) · 0) = 0)
121119, 120breqtrd 5169 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 0)
12287, 121eqbrtrd 5165 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12372, 74, 75, 122fsumrlim 15847 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 Σ𝑘 ∈ (0..^𝐷)0)
12474olcd 875 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin))
125 sumz 15758 . . . . . 6 (((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
126124, 125syl 17 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
127123, 126breqtrd 5169 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12832, 29ffvelcdmd 7105 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → (𝐶𝐷) ∈ ℂ)
129128adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐶𝐷) ∈ ℂ)
130129, 31mulcld 11281 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐶𝐷) · (𝑥𝐷)) ∈ ℂ)
131130, 31, 44divcld 12043 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ)
132 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐶𝑘) = (𝐶𝐷))
133 oveq2 7439 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝑥𝑘) = (𝑥𝐷))
134132, 133oveq12d 7449 . . . . . . . . . 10 (𝑘 = 𝐷 → ((𝐶𝑘) · (𝑥𝑘)) = ((𝐶𝐷) · (𝑥𝐷)))
135134oveq1d 7446 . . . . . . . . 9 (𝑘 = 𝐷 → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
136135sumsn 15782 . . . . . . . 8 ((𝐷 ∈ ℕ0 ∧ (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
13730, 131, 136syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
138129, 31, 44divcan4d 12049 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) = (𝐶𝐷))
139137, 138eqtrd 2777 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (𝐶𝐷))
140139mpteq2dva 5242 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)))
141 rlimconst 15580 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (𝐶𝐷) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
14211, 128, 141sylancr 587 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
143140, 142eqbrtrd 5165 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 (𝐶𝐷))
14469, 71, 127, 143rlimadd 15679 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 (0 + (𝐶𝐷)))
145128addlidd 11462 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = (𝐶𝐷))
146 signsply0.b . . . 4 𝐵 = (𝐶𝐷)
147145, 146eqtr4di 2795 . . 3 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = 𝐵)
148144, 147breqtrd 5169 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 𝐵)
14967, 148eqbrtrd 5165 1 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cmpt 5225   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  -cneg 11493   / cdiv 11920  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  ..^cfzo 13694  cexp 14102  𝑟 crli 15521  Σcsu 15722  Polycply 26223  coeffccoe 26225  degcdgr 26226  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-0p 25705  df-limc 25901  df-dv 25902  df-ply 26227  df-coe 26229  df-dgr 26230  df-log 26598  df-cxp 26599
This theorem is referenced by:  signsply0  34566
  Copyright terms: Public domain W3C validator