Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsplypnf Structured version   Visualization version   GIF version

Theorem signsplypnf 34543
Description: The quotient of a polynomial 𝐹 by a monic monomial of same degree 𝐺 converges to the highest coefficient of 𝐹. (Contributed by Thierry Arnoux, 18-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsplypnf.g 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
Assertion
Ref Expression
signsplypnf (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem signsplypnf
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 plyf 26251 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
21ffnd 6737 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐹 Fn ℂ)
3 ovex 7463 . . . . . 6 (𝑥𝐷) ∈ V
43rgenw 3062 . . . . 5 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
5 signsplypnf.g . . . . . 6 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
65fnmpt 6708 . . . . 5 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → 𝐺 Fn ℝ+)
74, 6mp1i 13 . . . 4 (𝐹 ∈ (Poly‘ℝ) → 𝐺 Fn ℝ+)
8 cnex 11233 . . . . 5 ℂ ∈ V
98a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℂ ∈ V)
10 reex 11243 . . . . . 6 ℝ ∈ V
11 rpssre 13039 . . . . . 6 + ⊆ ℝ
1210, 11ssexi 5327 . . . . 5 + ∈ V
1312a1i 11 . . . 4 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ∈ V)
14 ax-resscn 11209 . . . . . 6 ℝ ⊆ ℂ
1511, 14sstri 4004 . . . . 5 + ⊆ ℂ
16 sseqin2 4230 . . . . 5 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
1715, 16mpbi 230 . . . 4 (ℂ ∩ ℝ+) = ℝ+
18 signsply0.c . . . . 5 𝐶 = (coeff‘𝐹)
19 signsply0.d . . . . 5 𝐷 = (deg‘𝐹)
2018, 19coeid2 26292 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)))
215fvmpt2 7026 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ (𝑥𝐷) ∈ V) → (𝐺𝑥) = (𝑥𝐷))
223, 21mpan2 691 . . . . 5 (𝑥 ∈ ℝ+ → (𝐺𝑥) = (𝑥𝐷))
2322adantl 481 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐺𝑥) = (𝑥𝐷))
242, 7, 9, 13, 17, 20, 23offval 7705 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
25 fzfid 14010 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) ∈ Fin)
2615a1i 11 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℂ)
2726sselda 3994 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
28 dgrcl 26286 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2919, 28eqeltrid 2842 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℕ0)
3029adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℕ0)
3127, 30expcld 14182 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
3218coef3 26285 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℂ)
3332ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐶:ℕ0⟶ℂ)
34 elfznn0 13656 . . . . . . . . 9 (𝑘 ∈ (0...𝐷) → 𝑘 ∈ ℕ0)
3534adantl 481 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑘 ∈ ℕ0)
3633, 35ffvelcdmd 7104 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝐶𝑘) ∈ ℂ)
3727adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ∈ ℂ)
3837, 35expcld 14182 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝑘) ∈ ℂ)
3936, 38mulcld 11278 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → ((𝐶𝑘) · (𝑥𝑘)) ∈ ℂ)
40 rpne0 13048 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
4140adantl 481 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
4229nn0zd 12636 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ ℤ)
4342adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
4427, 41, 43expne0d 14188 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
4525, 31, 39, 44fsumdivc 15818 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))
46 fzosn 13771 . . . . . . . . 9 (𝐷 ∈ ℤ → (𝐷..^(𝐷 + 1)) = {𝐷})
4746ineq2d 4227 . . . . . . . 8 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ((0..^𝐷) ∩ {𝐷}))
48 fzodisj 13729 . . . . . . . 8 ((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ∅
4947, 48eqtr3di 2789 . . . . . . 7 (𝐷 ∈ ℤ → ((0..^𝐷) ∩ {𝐷}) = ∅)
5043, 49syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((0..^𝐷) ∩ {𝐷}) = ∅)
51 fzval3 13769 . . . . . . . . 9 (𝐷 ∈ ℤ → (0...𝐷) = (0..^(𝐷 + 1)))
5242, 51syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = (0..^(𝐷 + 1)))
53 nn0uz 12917 . . . . . . . . . 10 0 = (ℤ‘0)
5429, 53eleqtrdi 2848 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → 𝐷 ∈ (ℤ‘0))
55 fzosplitsn 13810 . . . . . . . . 9 (𝐷 ∈ (ℤ‘0) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5654, 55syl 17 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷}))
5752, 56eqtrd 2774 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5857adantr 480 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷}))
5931adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ∈ ℂ)
6041adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ≠ 0)
6143adantr 480 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐷 ∈ ℤ)
6237, 60, 61expne0d 14188 . . . . . . 7 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥𝐷) ≠ 0)
6339, 59, 62divcld 12040 . . . . . 6 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ ℂ)
6450, 58, 25, 63fsumsplit 15773 . . . . 5 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6545, 64eqtrd 2774 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))))
6665mpteq2dva 5247 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
6724, 66eqtrd 2774 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) = (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))))
68 sumex 15720 . . . . 5 Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
6968a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
70 sumex 15720 . . . . 5 Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V
7170a1i 11 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7211a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ℝ+ ⊆ ℝ)
73 fzofi 14011 . . . . . . 7 (0..^𝐷) ∈ Fin
7473a1i 11 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (0..^𝐷) ∈ Fin)
75 ovexd 7465 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ (𝑥 ∈ ℝ+𝑘 ∈ (0..^𝐷))) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) ∈ V)
7632ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐶:ℕ0⟶ℂ)
77 elfzonn0 13743 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝐷) → 𝑘 ∈ ℕ0)
7877ad2antlr 727 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℕ0)
7976, 78ffvelcdmd 7104 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ ℂ)
8027adantlr 715 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
8180, 78expcld 14182 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑘) ∈ ℂ)
8231adantlr 715 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ∈ ℂ)
8340adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
8443adantlr 715 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℤ)
8580, 83, 84expne0d 14188 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝐷) ≠ 0)
8679, 81, 82, 85divassd 12075 . . . . . . . 8 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷))))
8786mpteq2dva 5247 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))))
88 fvexd 6921 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶𝑘) ∈ V)
89 ovexd 7465 . . . . . . . . 9 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑘) / (𝑥𝐷)) ∈ V)
9032adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐶:ℕ0⟶ℂ)
9177adantl 481 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℕ0)
9290, 91ffvelcdmd 7104 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐶𝑘) ∈ ℂ)
93 rlimconst 15576 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (𝐶𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9411, 92, 93sylancr 587 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (𝐶𝑘)) ⇝𝑟 (𝐶𝑘))
9578nn0zd 12636 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℤ)
9684, 95zsubcld 12724 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐷𝑘) ∈ ℤ)
9780, 83, 96cxpexpzd 26767 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐷𝑘)) = (𝑥↑(𝐷𝑘)))
9897oveq2d 7446 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (1 / (𝑥↑(𝐷𝑘))))
9980, 83, 96expnegd 14189 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (1 / (𝑥↑(𝐷𝑘))))
10084zcnd 12720 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ ℂ)
10178nn0cnd 12586 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈ ℂ)
102100, 101negsubdi2d 11633 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → -(𝐷𝑘) = (𝑘𝐷))
103102oveq2d 7446 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷𝑘)) = (𝑥↑(𝑘𝐷)))
10498, 99, 1033eqtr2d 2780 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = (𝑥↑(𝑘𝐷)))
10580, 83, 84, 95expsubd 14193 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑(𝑘𝐷)) = ((𝑥𝑘) / (𝑥𝐷)))
106104, 105eqtrd 2774 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(𝐷𝑘))) = ((𝑥𝑘) / (𝑥𝐷)))
107106mpteq2dva 5247 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) = (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))))
10891nn0red 12585 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℝ)
10929adantr 480 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℕ0)
110109nn0red 12585 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℝ)
111 elfzolt2 13704 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝐷) → 𝑘 < 𝐷)
112111adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 < 𝐷)
113 difrp 13070 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑘 < 𝐷 ↔ (𝐷𝑘) ∈ ℝ+))
114113biimpa 476 . . . . . . . . . . . 12 (((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑘 < 𝐷) → (𝐷𝑘) ∈ ℝ+)
115108, 110, 112, 114syl21anc 838 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝐷𝑘) ∈ ℝ+)
116 cxplim 27029 . . . . . . . . . . 11 ((𝐷𝑘) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
117115, 116syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 / (𝑥𝑐(𝐷𝑘)))) ⇝𝑟 0)
118107, 117eqbrtrrd 5171 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝑥𝑘) / (𝑥𝐷))) ⇝𝑟 0)
11988, 89, 94, 118rlimmul 15677 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 ((𝐶𝑘) · 0))
12092mul01d 11457 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → ((𝐶𝑘) · 0) = 0)
121119, 120breqtrd 5173 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶𝑘) · ((𝑥𝑘) / (𝑥𝐷)))) ⇝𝑟 0)
12287, 121eqbrtrd 5169 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12372, 74, 75, 122fsumrlim 15843 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 Σ𝑘 ∈ (0..^𝐷)0)
12474olcd 874 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → ((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin))
125 sumz 15754 . . . . . 6 (((0..^𝐷) ⊆ (ℤ‘0) ∨ (0..^𝐷) ∈ Fin) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
126124, 125syl 17 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → Σ𝑘 ∈ (0..^𝐷)0 = 0)
127123, 126breqtrd 5173 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 0)
12832, 29ffvelcdmd 7104 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → (𝐶𝐷) ∈ ℂ)
129128adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (𝐶𝐷) ∈ ℂ)
130129, 31mulcld 11278 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝐶𝐷) · (𝑥𝐷)) ∈ ℂ)
131130, 31, 44divcld 12040 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ)
132 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐶𝑘) = (𝐶𝐷))
133 oveq2 7438 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝑥𝑘) = (𝑥𝐷))
134132, 133oveq12d 7448 . . . . . . . . . 10 (𝑘 = 𝐷 → ((𝐶𝑘) · (𝑥𝑘)) = ((𝐶𝐷) · (𝑥𝐷)))
135134oveq1d 7445 . . . . . . . . 9 (𝑘 = 𝐷 → (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
136135sumsn 15778 . . . . . . . 8 ((𝐷 ∈ ℕ0 ∧ (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) ∈ ℂ) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
13730, 131, 136syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)))
138129, 31, 44divcan4d 12046 . . . . . . 7 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → (((𝐶𝐷) · (𝑥𝐷)) / (𝑥𝐷)) = (𝐶𝐷))
139137, 138eqtrd 2774 . . . . . 6 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) = (𝐶𝐷))
140139mpteq2dva 5247 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) = (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)))
141 rlimconst 15576 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (𝐶𝐷) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
14211, 128, 141sylancr 587 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (𝐶𝐷)) ⇝𝑟 (𝐶𝐷))
143140, 142eqbrtrd 5169 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷))) ⇝𝑟 (𝐶𝐷))
14469, 71, 127, 143rlimadd 15675 . . 3 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 (0 + (𝐶𝐷)))
145128addlidd 11459 . . . 4 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = (𝐶𝐷))
146 signsply0.b . . . 4 𝐵 = (𝐶𝐷)
147145, 146eqtr4di 2792 . . 3 (𝐹 ∈ (Poly‘ℝ) → (0 + (𝐶𝐷)) = 𝐵)
148144, 147breqtrd 5173 . 2 (𝐹 ∈ (Poly‘ℝ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶𝑘) · (𝑥𝑘)) / (𝑥𝐷)))) ⇝𝑟 𝐵)
14967, 148eqbrtrd 5169 1 (𝐹 ∈ (Poly‘ℝ) → (𝐹f / 𝐺) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  Vcvv 3477  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630   class class class wbr 5147  cmpt 5230   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489  -cneg 11490   / cdiv 11917  0cn0 12523  cz 12610  cuz 12875  +crp 13031  ...cfz 13543  ..^cfzo 13690  cexp 14098  𝑟 crli 15517  Σcsu 15718  Polycply 26237  coeffccoe 26239  degcdgr 26240  𝑐ccxp 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-0p 25718  df-limc 25915  df-dv 25916  df-ply 26241  df-coe 26243  df-dgr 26244  df-log 26612  df-cxp 26613
This theorem is referenced by:  signsply0  34544
  Copyright terms: Public domain W3C validator