MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv Structured version   Visualization version   GIF version

Theorem bitsinv 15800
Description: The inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypothesis
Ref Expression
bitsinv.k 𝐾 = (bits ↾ ℕ0)
Assertion
Ref Expression
bitsinv (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾𝐴) = Σ𝑘𝐴 (2↑𝑘))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐾(𝑘)

Proof of Theorem bitsinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sumeq1 15048 . 2 (𝑥 = 𝐴 → Σ𝑘𝑥 (2↑𝑘) = Σ𝑘𝐴 (2↑𝑘))
2 bitsinv.k . . 3 𝐾 = (bits ↾ ℕ0)
3 bitsf1ocnv 15796 . . . 4 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑘𝑥 (2↑𝑘)))
43simpri 488 . . 3 (bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑘𝑥 (2↑𝑘))
52, 4eqtri 2847 . 2 𝐾 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑘𝑥 (2↑𝑘))
6 sumex 15047 . 2 Σ𝑘𝐴 (2↑𝑘) ∈ V
71, 5, 6fvmpt 6771 1 (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾𝐴) = Σ𝑘𝐴 (2↑𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  cin 3938  𝒫 cpw 4542  cmpt 5149  ccnv 5557  cres 5560  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  Fincfn 8512  2c2 11695  0cn0 11900  cexp 13432  Σcsu 15045  bitscbits 15771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-bits 15774
This theorem is referenced by:  bitsinvp1  15801
  Copyright terms: Public domain W3C validator