MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylpval Structured version   Visualization version   GIF version

Theorem taylpval 25524
Description: Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
taylpfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
taylpval.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
taylpval (𝜑 → (𝑇𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem taylpval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 taylpfval.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylpfval.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 taylpfval.a . . 3 (𝜑𝐴𝑆)
4 taylpfval.n . . 3 (𝜑𝑁 ∈ ℕ0)
5 taylpfval.b . . 3 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
6 taylpfval.t . . 3 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylpfval 25522 . 2 (𝜑𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
8 simplr 766 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 = 𝑋)
98oveq1d 7292 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝐵) = (𝑋𝐵))
109oveq1d 7292 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑥𝐵)↑𝑘) = ((𝑋𝐵)↑𝑘))
1110oveq2d 7293 . . 3 (((𝜑𝑥 = 𝑋) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))
1211sumeq2dv 15413 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))
13 taylpval.x . 2 (𝜑𝑋 ∈ ℂ)
14 sumex 15397 . . 3 Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ V
1514a1i 11 . 2 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ V)
167, 12, 13, 15fvmptd 6884 1 (𝜑 → (𝑇𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3431  wss 3888  {cpr 4565  dom cdm 5591  wf 6431  cfv 6435  (class class class)co 7277  cc 10867  cr 10868  0cc0 10869   · cmul 10874  cmin 11203   / cdiv 11630  0cn0 12231  ...cfz 13237  cexp 13780  !cfa 13985  Σcsu 15395   D𝑛 cdvn 25026   Tayl ctayl 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948  ax-mulf 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7976  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-map 8615  df-pm 8616  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-fsupp 9127  df-fi 9168  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-icc 13084  df-fz 13238  df-fzo 13381  df-seq 13720  df-exp 13781  df-fac 13986  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cnp 22377  df-haus 22464  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-tsms 23276  df-xms 23471  df-ms 23472  df-limc 25028  df-dv 25029  df-dvn 25030  df-tayl 25512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator