Proof of Theorem aaliou3lem6
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . 5
⊢ (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴)) |
| 2 | 1 | sumeq1d 15721 |
. . . 4
⊢ (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
| 3 | | aaliou3lem.e |
. . . 4
⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) |
| 4 | | sumex 15709 |
. . . 4
⊢
Σ𝑏 ∈
(1...𝐴)(𝐹‘𝑏) ∈ V |
| 5 | 2, 3, 4 | fvmpt 6991 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
| 6 | 5 | oveq1d 7425 |
. 2
⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) · (2↑(!‘𝐴)))) |
| 7 | | fzfid 13996 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(1...𝐴) ∈
Fin) |
| 8 | | 2rp 13018 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
| 9 | | nnnn0 12513 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
| 10 | 9 | faccld 14307 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℕ) |
| 11 | 10 | nnzd 12620 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℤ) |
| 12 | | rpexpcl 14103 |
. . . . . 6
⊢ ((2
∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) →
(2↑(!‘𝐴)) ∈
ℝ+) |
| 13 | 8, 11, 12 | sylancr 587 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
(2↑(!‘𝐴)) ∈
ℝ+) |
| 14 | 13 | rpcnd 13058 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(2↑(!‘𝐴)) ∈
ℂ) |
| 15 | | elfznn 13575 |
. . . . . . 7
⊢ (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ) |
| 16 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏)) |
| 17 | 16 | negeqd 11481 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏)) |
| 18 | 17 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏))) |
| 19 | | aaliou3lem.c |
. . . . . . . 8
⊢ 𝐹 = (𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))) |
| 20 | | ovex 7443 |
. . . . . . . 8
⊢
(2↑-(!‘𝑏)) ∈ V |
| 21 | 18, 19, 20 | fvmpt 6991 |
. . . . . . 7
⊢ (𝑏 ∈ ℕ → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
| 22 | 15, 21 | syl 17 |
. . . . . 6
⊢ (𝑏 ∈ (1...𝐴) → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
| 23 | 22 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
| 24 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ) |
| 25 | 24 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0) |
| 26 | 25 | faccld 14307 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ) |
| 27 | 26 | nnzd 12620 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ) |
| 28 | 27 | znegcld 12704 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ) |
| 29 | | rpexpcl 14103 |
. . . . . . 7
⊢ ((2
∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) →
(2↑-(!‘𝑏))
∈ ℝ+) |
| 30 | 8, 28, 29 | sylancr 587 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈
ℝ+) |
| 31 | 30 | rpcnd 13058 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈
ℂ) |
| 32 | 23, 31 | eqeltrd 2835 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹‘𝑏) ∈ ℂ) |
| 33 | 7, 14, 32 | fsummulc1 15806 |
. . 3
⊢ (𝐴 ∈ ℕ →
(Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹‘𝑏) · (2↑(!‘𝐴)))) |
| 34 | 23 | oveq1d 7425 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹‘𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴)))) |
| 35 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ) |
| 36 | | 2cnne0 12455 |
. . . . . . . 8
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 37 | | expaddz 14129 |
. . . . . . . 8
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) →
(2↑(-(!‘𝑏) +
(!‘𝐴))) =
((2↑-(!‘𝑏))
· (2↑(!‘𝐴)))) |
| 38 | 36, 37 | mpan 690 |
. . . . . . 7
⊢
((-(!‘𝑏)
∈ ℤ ∧ (!‘𝐴) ∈ ℤ) →
(2↑(-(!‘𝑏) +
(!‘𝐴))) =
((2↑-(!‘𝑏))
· (2↑(!‘𝐴)))) |
| 39 | 28, 35, 38 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴)))) |
| 40 | | 2z 12629 |
. . . . . . 7
⊢ 2 ∈
ℤ |
| 41 | 28 | zcnd 12703 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ) |
| 42 | 35 | zcnd 12703 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ) |
| 43 | 41, 42 | addcomd 11442 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏))) |
| 44 | 26 | nncnd 12261 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ) |
| 45 | 42, 44 | negsubd 11605 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏))) |
| 46 | 43, 45 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏))) |
| 47 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈
ℕ0) |
| 48 | | elfzle2 13550 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (1...𝐴) → 𝑏 ≤ 𝐴) |
| 49 | 48 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ≤ 𝐴) |
| 50 | | facwordi 14312 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝑏
≤ 𝐴) →
(!‘𝑏) ≤
(!‘𝐴)) |
| 51 | 25, 47, 49, 50 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴)) |
| 52 | 26 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈
ℕ0) |
| 53 | 47 | faccld 14307 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ) |
| 54 | 53 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈
ℕ0) |
| 55 | | nn0sub 12556 |
. . . . . . . . . 10
⊢
(((!‘𝑏) ∈
ℕ0 ∧ (!‘𝐴) ∈ ℕ0) →
((!‘𝑏) ≤
(!‘𝐴) ↔
((!‘𝐴) −
(!‘𝑏)) ∈
ℕ0)) |
| 56 | 52, 54, 55 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈
ℕ0)) |
| 57 | 51, 56 | mpbid 232 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈
ℕ0) |
| 58 | 46, 57 | eqeltrd 2835 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈
ℕ0) |
| 59 | | zexpcl 14099 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) →
(2↑(-(!‘𝑏) +
(!‘𝐴))) ∈
ℤ) |
| 60 | 40, 58, 59 | sylancr 587 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ) |
| 61 | 39, 60 | eqeltrrd 2836 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) ·
(2↑(!‘𝐴)))
∈ ℤ) |
| 62 | 34, 61 | eqeltrd 2835 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹‘𝑏) · (2↑(!‘𝐴))) ∈ ℤ) |
| 63 | 7, 62 | fsumzcl 15756 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈ (1...𝐴)((𝐹‘𝑏) · (2↑(!‘𝐴))) ∈ ℤ) |
| 64 | 33, 63 | eqeltrd 2835 |
. 2
⊢ (𝐴 ∈ ℕ →
(Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) · (2↑(!‘𝐴))) ∈ ℤ) |
| 65 | 6, 64 | eqeltrd 2835 |
1
⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈
ℤ) |