MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem6 Structured version   Visualization version   GIF version

Theorem aaliou3lem6 26405
Description: Lemma for aaliou3 26408. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem6 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem6
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 15733 . . . 4 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . . 4 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 15721 . . . 4 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 7016 . . 3 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
65oveq1d 7446 . 2 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))))
7 fzfid 14011 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
8 2rp 13037 . . . . . 6 2 ∈ ℝ+
9 nnnn0 12531 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
109faccld 14320 . . . . . . 7 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
1110nnzd 12638 . . . . . 6 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
12 rpexpcl 14118 . . . . . 6 ((2 ∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) → (2↑(!‘𝐴)) ∈ ℝ+)
138, 11, 12sylancr 587 . . . . 5 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℝ+)
1413rpcnd 13077 . . . 4 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℂ)
15 elfznn 13590 . . . . . . 7 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
16 fveq2 6907 . . . . . . . . . 10 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1716negeqd 11500 . . . . . . . . 9 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1817oveq2d 7447 . . . . . . . 8 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
19 aaliou3lem.c . . . . . . . 8 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
20 ovex 7464 . . . . . . . 8 (2↑-(!‘𝑏)) ∈ V
2118, 19, 20fvmpt 7016 . . . . . . 7 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
2215, 21syl 17 . . . . . 6 (𝑏 ∈ (1...𝐴) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2322adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2415adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
2524nnnn0d 12585 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0)
2625faccld 14320 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ)
2726nnzd 12638 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ)
2827znegcld 12722 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ)
29 rpexpcl 14118 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
308, 28, 29sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℝ+)
3130rpcnd 13077 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℂ)
3223, 31eqeltrd 2839 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℂ)
337, 14, 32fsummulc1 15818 . . 3 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))))
3423oveq1d 7446 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3511adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ)
36 2cnne0 12474 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
37 expaddz 14144 . . . . . . . 8 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3836, 37mpan 690 . . . . . . 7 ((-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3928, 35, 38syl2anc 584 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
40 2z 12647 . . . . . . 7 2 ∈ ℤ
4128zcnd 12721 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ)
4235zcnd 12721 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ)
4341, 42addcomd 11461 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏)))
4426nncnd 12280 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ)
4542, 44negsubd 11624 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏)))
4643, 45eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏)))
479adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈ ℕ0)
48 elfzle2 13565 . . . . . . . . . . 11 (𝑏 ∈ (1...𝐴) → 𝑏𝐴)
4948adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏𝐴)
50 facwordi 14325 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ ℕ0𝑏𝐴) → (!‘𝑏) ≤ (!‘𝐴))
5125, 47, 49, 50syl3anc 1370 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴))
5226nnnn0d 12585 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ0)
5347faccld 14320 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ)
5453nnnn0d 12585 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ0)
55 nn0sub 12574 . . . . . . . . . 10 (((!‘𝑏) ∈ ℕ0 ∧ (!‘𝐴) ∈ ℕ0) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5652, 54, 55syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5751, 56mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0)
5846, 57eqeltrd 2839 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0)
59 zexpcl 14114 . . . . . . 7 ((2 ∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6040, 58, 59sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6139, 60eqeltrrd 2840 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))) ∈ ℤ)
6234, 61eqeltrd 2839 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
637, 62fsumzcl 15768 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
6433, 63eqeltrd 2839 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
656, 64eqeltrd 2839 1 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490  -cneg 11491  cn 12264  2c2 12319  0cn0 12524  cz 12611  +crp 13032  ...cfz 13544  cexp 14099  !cfa 14309  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  aaliou3lem9  26407
  Copyright terms: Public domain W3C validator