MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem6 Structured version   Visualization version   GIF version

Theorem aaliou3lem6 25413
Description: Lemma for aaliou3 25416. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem6 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem6
StepHypRef Expression
1 oveq2 7263 . . . . 5 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 15341 . . . 4 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . . 4 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 15327 . . . 4 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 6857 . . 3 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
65oveq1d 7270 . 2 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))))
7 fzfid 13621 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
8 2rp 12664 . . . . . 6 2 ∈ ℝ+
9 nnnn0 12170 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
109faccld 13926 . . . . . . 7 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
1110nnzd 12354 . . . . . 6 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
12 rpexpcl 13729 . . . . . 6 ((2 ∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) → (2↑(!‘𝐴)) ∈ ℝ+)
138, 11, 12sylancr 586 . . . . 5 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℝ+)
1413rpcnd 12703 . . . 4 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℂ)
15 elfznn 13214 . . . . . . 7 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
16 fveq2 6756 . . . . . . . . . 10 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1716negeqd 11145 . . . . . . . . 9 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1817oveq2d 7271 . . . . . . . 8 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
19 aaliou3lem.c . . . . . . . 8 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
20 ovex 7288 . . . . . . . 8 (2↑-(!‘𝑏)) ∈ V
2118, 19, 20fvmpt 6857 . . . . . . 7 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
2215, 21syl 17 . . . . . 6 (𝑏 ∈ (1...𝐴) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2322adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2415adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
2524nnnn0d 12223 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0)
2625faccld 13926 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ)
2726nnzd 12354 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ)
2827znegcld 12357 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ)
29 rpexpcl 13729 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
308, 28, 29sylancr 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℝ+)
3130rpcnd 12703 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℂ)
3223, 31eqeltrd 2839 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℂ)
337, 14, 32fsummulc1 15425 . . 3 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))))
3423oveq1d 7270 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3511adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ)
36 2cnne0 12113 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
37 expaddz 13755 . . . . . . . 8 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3836, 37mpan 686 . . . . . . 7 ((-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3928, 35, 38syl2anc 583 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
40 2z 12282 . . . . . . 7 2 ∈ ℤ
4128zcnd 12356 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ)
4235zcnd 12356 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ)
4341, 42addcomd 11107 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏)))
4426nncnd 11919 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ)
4542, 44negsubd 11268 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏)))
4643, 45eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏)))
479adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈ ℕ0)
48 elfzle2 13189 . . . . . . . . . . 11 (𝑏 ∈ (1...𝐴) → 𝑏𝐴)
4948adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏𝐴)
50 facwordi 13931 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ ℕ0𝑏𝐴) → (!‘𝑏) ≤ (!‘𝐴))
5125, 47, 49, 50syl3anc 1369 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴))
5226nnnn0d 12223 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ0)
5347faccld 13926 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ)
5453nnnn0d 12223 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ0)
55 nn0sub 12213 . . . . . . . . . 10 (((!‘𝑏) ∈ ℕ0 ∧ (!‘𝐴) ∈ ℕ0) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5652, 54, 55syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5751, 56mpbid 231 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0)
5846, 57eqeltrd 2839 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0)
59 zexpcl 13725 . . . . . . 7 ((2 ∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6040, 58, 59sylancr 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6139, 60eqeltrrd 2840 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))) ∈ ℤ)
6234, 61eqeltrd 2839 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
637, 62fsumzcl 15375 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
6433, 63eqeltrd 2839 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
656, 64eqeltrd 2839 1 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  -cneg 11136  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  cexp 13710  !cfa 13915  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  aaliou3lem9  25415
  Copyright terms: Public domain W3C validator