MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem6 Structured version   Visualization version   GIF version

Theorem aaliou3lem6 26408
Description: Lemma for aaliou3 26411. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem6 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem6
StepHypRef Expression
1 oveq2 7456 . . . . 5 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 15748 . . . 4 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . . 4 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 15736 . . . 4 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 7029 . . 3 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
65oveq1d 7463 . 2 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))))
7 fzfid 14024 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
8 2rp 13062 . . . . . 6 2 ∈ ℝ+
9 nnnn0 12560 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
109faccld 14333 . . . . . . 7 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
1110nnzd 12666 . . . . . 6 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
12 rpexpcl 14131 . . . . . 6 ((2 ∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) → (2↑(!‘𝐴)) ∈ ℝ+)
138, 11, 12sylancr 586 . . . . 5 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℝ+)
1413rpcnd 13101 . . . 4 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℂ)
15 elfznn 13613 . . . . . . 7 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
16 fveq2 6920 . . . . . . . . . 10 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1716negeqd 11530 . . . . . . . . 9 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1817oveq2d 7464 . . . . . . . 8 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
19 aaliou3lem.c . . . . . . . 8 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
20 ovex 7481 . . . . . . . 8 (2↑-(!‘𝑏)) ∈ V
2118, 19, 20fvmpt 7029 . . . . . . 7 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
2215, 21syl 17 . . . . . 6 (𝑏 ∈ (1...𝐴) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2322adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2415adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
2524nnnn0d 12613 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0)
2625faccld 14333 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ)
2726nnzd 12666 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ)
2827znegcld 12749 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ)
29 rpexpcl 14131 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
308, 28, 29sylancr 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℝ+)
3130rpcnd 13101 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℂ)
3223, 31eqeltrd 2844 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℂ)
337, 14, 32fsummulc1 15833 . . 3 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))))
3423oveq1d 7463 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3511adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ)
36 2cnne0 12503 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
37 expaddz 14157 . . . . . . . 8 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3836, 37mpan 689 . . . . . . 7 ((-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3928, 35, 38syl2anc 583 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
40 2z 12675 . . . . . . 7 2 ∈ ℤ
4128zcnd 12748 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ)
4235zcnd 12748 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ)
4341, 42addcomd 11492 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏)))
4426nncnd 12309 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ)
4542, 44negsubd 11653 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏)))
4643, 45eqtrd 2780 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏)))
479adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈ ℕ0)
48 elfzle2 13588 . . . . . . . . . . 11 (𝑏 ∈ (1...𝐴) → 𝑏𝐴)
4948adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏𝐴)
50 facwordi 14338 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ ℕ0𝑏𝐴) → (!‘𝑏) ≤ (!‘𝐴))
5125, 47, 49, 50syl3anc 1371 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴))
5226nnnn0d 12613 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ0)
5347faccld 14333 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ)
5453nnnn0d 12613 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ0)
55 nn0sub 12603 . . . . . . . . . 10 (((!‘𝑏) ∈ ℕ0 ∧ (!‘𝐴) ∈ ℕ0) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5652, 54, 55syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5751, 56mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0)
5846, 57eqeltrd 2844 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0)
59 zexpcl 14127 . . . . . . 7 ((2 ∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6040, 58, 59sylancr 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6139, 60eqeltrrd 2845 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))) ∈ ℤ)
6234, 61eqeltrd 2844 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
637, 62fsumzcl 15783 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
6433, 63eqeltrd 2844 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
656, 64eqeltrd 2844 1 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  -cneg 11521  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057  ...cfz 13567  cexp 14112  !cfa 14322  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  aaliou3lem9  26410
  Copyright terms: Public domain W3C validator