MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem6 Structured version   Visualization version   GIF version

Theorem aaliou3lem6 25588
Description: Lemma for aaliou3 25591. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem6 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem6
StepHypRef Expression
1 oveq2 7324 . . . . 5 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 15489 . . . 4 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . . 4 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 15475 . . . 4 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 6914 . . 3 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
65oveq1d 7331 . 2 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))))
7 fzfid 13772 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
8 2rp 12814 . . . . . 6 2 ∈ ℝ+
9 nnnn0 12319 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
109faccld 14077 . . . . . . 7 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
1110nnzd 12504 . . . . . 6 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
12 rpexpcl 13880 . . . . . 6 ((2 ∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) → (2↑(!‘𝐴)) ∈ ℝ+)
138, 11, 12sylancr 587 . . . . 5 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℝ+)
1413rpcnd 12853 . . . 4 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℂ)
15 elfznn 13364 . . . . . . 7 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
16 fveq2 6811 . . . . . . . . . 10 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1716negeqd 11294 . . . . . . . . 9 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1817oveq2d 7332 . . . . . . . 8 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
19 aaliou3lem.c . . . . . . . 8 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
20 ovex 7349 . . . . . . . 8 (2↑-(!‘𝑏)) ∈ V
2118, 19, 20fvmpt 6914 . . . . . . 7 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
2215, 21syl 17 . . . . . 6 (𝑏 ∈ (1...𝐴) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2322adantl 482 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2415adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
2524nnnn0d 12372 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0)
2625faccld 14077 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ)
2726nnzd 12504 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ)
2827znegcld 12507 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ)
29 rpexpcl 13880 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
308, 28, 29sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℝ+)
3130rpcnd 12853 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℂ)
3223, 31eqeltrd 2837 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℂ)
337, 14, 32fsummulc1 15573 . . 3 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))))
3423oveq1d 7331 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3511adantr 481 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ)
36 2cnne0 12262 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
37 expaddz 13906 . . . . . . . 8 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3836, 37mpan 687 . . . . . . 7 ((-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3928, 35, 38syl2anc 584 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
40 2z 12431 . . . . . . 7 2 ∈ ℤ
4128zcnd 12506 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ)
4235zcnd 12506 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ)
4341, 42addcomd 11256 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏)))
4426nncnd 12068 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ)
4542, 44negsubd 11417 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏)))
4643, 45eqtrd 2776 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏)))
479adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈ ℕ0)
48 elfzle2 13339 . . . . . . . . . . 11 (𝑏 ∈ (1...𝐴) → 𝑏𝐴)
4948adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏𝐴)
50 facwordi 14082 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ ℕ0𝑏𝐴) → (!‘𝑏) ≤ (!‘𝐴))
5125, 47, 49, 50syl3anc 1370 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴))
5226nnnn0d 12372 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ0)
5347faccld 14077 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ)
5453nnnn0d 12372 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ0)
55 nn0sub 12362 . . . . . . . . . 10 (((!‘𝑏) ∈ ℕ0 ∧ (!‘𝐴) ∈ ℕ0) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5652, 54, 55syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5751, 56mpbid 231 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0)
5846, 57eqeltrd 2837 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0)
59 zexpcl 13876 . . . . . . 7 ((2 ∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6040, 58, 59sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6139, 60eqeltrrd 2838 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))) ∈ ℤ)
6234, 61eqeltrd 2837 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
637, 62fsumzcl 15523 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
6433, 63eqeltrd 2837 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
656, 64eqeltrd 2837 1 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5086  cmpt 5169  cfv 6465  (class class class)co 7316  cc 10948  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955  cle 11089  cmin 11284  -cneg 11285  cn 12052  2c2 12107  0cn0 12312  cz 12398  +crp 12809  ...cfz 13318  cexp 13861  !cfa 14066  Σcsu 15473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-sup 9277  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-fz 13319  df-fzo 13462  df-seq 13801  df-exp 13862  df-fac 14067  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-clim 15273  df-sum 15474
This theorem is referenced by:  aaliou3lem9  25590
  Copyright terms: Public domain W3C validator