MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem6 Structured version   Visualization version   GIF version

Theorem aaliou3lem6 24852
Description: Lemma for aaliou3 24855. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem6 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem6
StepHypRef Expression
1 oveq2 7159 . . . . 5 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 15050 . . . 4 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . . 4 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 15037 . . . 4 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 6764 . . 3 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
65oveq1d 7166 . 2 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))))
7 fzfid 13334 . . . 4 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
8 2rp 12387 . . . . . 6 2 ∈ ℝ+
9 nnnn0 11896 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
109faccld 13637 . . . . . . 7 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
1110nnzd 12078 . . . . . 6 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
12 rpexpcl 13441 . . . . . 6 ((2 ∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) → (2↑(!‘𝐴)) ∈ ℝ+)
138, 11, 12sylancr 587 . . . . 5 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℝ+)
1413rpcnd 12426 . . . 4 (𝐴 ∈ ℕ → (2↑(!‘𝐴)) ∈ ℂ)
15 elfznn 12929 . . . . . . 7 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
16 fveq2 6666 . . . . . . . . . 10 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1716negeqd 10872 . . . . . . . . 9 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1817oveq2d 7167 . . . . . . . 8 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
19 aaliou3lem.c . . . . . . . 8 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
20 ovex 7184 . . . . . . . 8 (2↑-(!‘𝑏)) ∈ V
2118, 19, 20fvmpt 6764 . . . . . . 7 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
2215, 21syl 17 . . . . . 6 (𝑏 ∈ (1...𝐴) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2322adantl 482 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) = (2↑-(!‘𝑏)))
2415adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
2524nnnn0d 11947 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0)
2625faccld 13637 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ)
2726nnzd 12078 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ)
2827znegcld 12081 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ)
29 rpexpcl 13441 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
308, 28, 29sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℝ+)
3130rpcnd 12426 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈ ℂ)
3223, 31eqeltrd 2917 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℂ)
337, 14, 32fsummulc1 15132 . . 3 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))))
3423oveq1d 7166 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3511adantr 481 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ)
36 2cnne0 11839 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
37 expaddz 13466 . . . . . . . 8 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3836, 37mpan 686 . . . . . . 7 ((-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
3928, 35, 38syl2anc 584 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))))
40 2z 12006 . . . . . . 7 2 ∈ ℤ
4128zcnd 12080 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ)
4235zcnd 12080 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ)
4341, 42addcomd 10834 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏)))
4426nncnd 11646 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ)
4542, 44negsubd 10995 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏)))
4643, 45eqtrd 2860 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏)))
479adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈ ℕ0)
48 elfzle2 12904 . . . . . . . . . . 11 (𝑏 ∈ (1...𝐴) → 𝑏𝐴)
4948adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏𝐴)
50 facwordi 13642 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ ℕ0𝑏𝐴) → (!‘𝑏) ≤ (!‘𝐴))
5125, 47, 49, 50syl3anc 1365 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴))
5226nnnn0d 11947 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ0)
5347faccld 13637 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ)
5453nnnn0d 11947 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ0)
55 nn0sub 11939 . . . . . . . . . 10 (((!‘𝑏) ∈ ℕ0 ∧ (!‘𝐴) ∈ ℕ0) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5652, 54, 55syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0))
5751, 56mpbid 233 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈ ℕ0)
5846, 57eqeltrd 2917 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0)
59 zexpcl 13437 . . . . . . 7 ((2 ∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6040, 58, 59sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ)
6139, 60eqeltrrd 2918 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) · (2↑(!‘𝐴))) ∈ ℤ)
6234, 61eqeltrd 2917 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
637, 62fsumzcl 15084 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)((𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
6433, 63eqeltrd 2917 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) · (2↑(!‘𝐴))) ∈ ℤ)
656, 64eqeltrd 2917 1 (𝐴 ∈ ℕ → ((𝐻𝐴) · (2↑(!‘𝐴))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wne 3020   class class class wbr 5062  cmpt 5142  cfv 6351  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cle 10668  cmin 10862  -cneg 10863  cn 11630  2c2 11684  0cn0 11889  cz 11973  +crp 12382  ...cfz 12885  cexp 13422  !cfa 13626  Σcsu 15035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-fac 13627  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036
This theorem is referenced by:  aaliou3lem9  24854
  Copyright terms: Public domain W3C validator