Proof of Theorem aaliou3lem6
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . 5
⊢ (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴)) |
2 | 1 | sumeq1d 15341 |
. . . 4
⊢ (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
3 | | aaliou3lem.e |
. . . 4
⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) |
4 | | sumex 15327 |
. . . 4
⊢
Σ𝑏 ∈
(1...𝐴)(𝐹‘𝑏) ∈ V |
5 | 2, 3, 4 | fvmpt 6857 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏)) |
6 | 5 | oveq1d 7270 |
. 2
⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) = (Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) · (2↑(!‘𝐴)))) |
7 | | fzfid 13621 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(1...𝐴) ∈
Fin) |
8 | | 2rp 12664 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
9 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
10 | 9 | faccld 13926 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℕ) |
11 | 10 | nnzd 12354 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℤ) |
12 | | rpexpcl 13729 |
. . . . . 6
⊢ ((2
∈ ℝ+ ∧ (!‘𝐴) ∈ ℤ) →
(2↑(!‘𝐴)) ∈
ℝ+) |
13 | 8, 11, 12 | sylancr 586 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
(2↑(!‘𝐴)) ∈
ℝ+) |
14 | 13 | rpcnd 12703 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(2↑(!‘𝐴)) ∈
ℂ) |
15 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ) |
16 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏)) |
17 | 16 | negeqd 11145 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏)) |
18 | 17 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏))) |
19 | | aaliou3lem.c |
. . . . . . . 8
⊢ 𝐹 = (𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))) |
20 | | ovex 7288 |
. . . . . . . 8
⊢
(2↑-(!‘𝑏)) ∈ V |
21 | 18, 19, 20 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑏 ∈ ℕ → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
22 | 15, 21 | syl 17 |
. . . . . 6
⊢ (𝑏 ∈ (1...𝐴) → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
23 | 22 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹‘𝑏) = (2↑-(!‘𝑏))) |
24 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ) |
25 | 24 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ0) |
26 | 25 | faccld 13926 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℕ) |
27 | 26 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℤ) |
28 | 27 | znegcld 12357 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℤ) |
29 | | rpexpcl 13729 |
. . . . . . 7
⊢ ((2
∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) →
(2↑-(!‘𝑏))
∈ ℝ+) |
30 | 8, 28, 29 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈
ℝ+) |
31 | 30 | rpcnd 12703 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑-(!‘𝑏)) ∈
ℂ) |
32 | 23, 31 | eqeltrd 2839 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹‘𝑏) ∈ ℂ) |
33 | 7, 14, 32 | fsummulc1 15425 |
. . 3
⊢ (𝐴 ∈ ℕ →
(Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) · (2↑(!‘𝐴))) = Σ𝑏 ∈ (1...𝐴)((𝐹‘𝑏) · (2↑(!‘𝐴)))) |
34 | 23 | oveq1d 7270 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹‘𝑏) · (2↑(!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴)))) |
35 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℤ) |
36 | | 2cnne0 12113 |
. . . . . . . 8
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
37 | | expaddz 13755 |
. . . . . . . 8
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑏) ∈ ℤ ∧ (!‘𝐴) ∈ ℤ)) →
(2↑(-(!‘𝑏) +
(!‘𝐴))) =
((2↑-(!‘𝑏))
· (2↑(!‘𝐴)))) |
38 | 36, 37 | mpan 686 |
. . . . . . 7
⊢
((-(!‘𝑏)
∈ ℤ ∧ (!‘𝐴) ∈ ℤ) →
(2↑(-(!‘𝑏) +
(!‘𝐴))) =
((2↑-(!‘𝑏))
· (2↑(!‘𝐴)))) |
39 | 28, 35, 38 | syl2anc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) = ((2↑-(!‘𝑏)) · (2↑(!‘𝐴)))) |
40 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
41 | 28 | zcnd 12356 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → -(!‘𝑏) ∈ ℂ) |
42 | 35 | zcnd 12356 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℂ) |
43 | 41, 42 | addcomd 11107 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) + -(!‘𝑏))) |
44 | 26 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈ ℂ) |
45 | 42, 44 | negsubd 11268 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) + -(!‘𝑏)) = ((!‘𝐴) − (!‘𝑏))) |
46 | 43, 45 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) = ((!‘𝐴) − (!‘𝑏))) |
47 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝐴 ∈
ℕ0) |
48 | | elfzle2 13189 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (1...𝐴) → 𝑏 ≤ 𝐴) |
49 | 48 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ≤ 𝐴) |
50 | | facwordi 13931 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℕ0
∧ 𝐴 ∈
ℕ0 ∧ 𝑏
≤ 𝐴) →
(!‘𝑏) ≤
(!‘𝐴)) |
51 | 25, 47, 49, 50 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ≤ (!‘𝐴)) |
52 | 26 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝑏) ∈
ℕ0) |
53 | 47 | faccld 13926 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈ ℕ) |
54 | 53 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (!‘𝐴) ∈
ℕ0) |
55 | | nn0sub 12213 |
. . . . . . . . . 10
⊢
(((!‘𝑏) ∈
ℕ0 ∧ (!‘𝐴) ∈ ℕ0) →
((!‘𝑏) ≤
(!‘𝐴) ↔
((!‘𝐴) −
(!‘𝑏)) ∈
ℕ0)) |
56 | 52, 54, 55 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝑏) ≤ (!‘𝐴) ↔ ((!‘𝐴) − (!‘𝑏)) ∈
ℕ0)) |
57 | 51, 56 | mpbid 231 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((!‘𝐴) − (!‘𝑏)) ∈
ℕ0) |
58 | 46, 57 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (-(!‘𝑏) + (!‘𝐴)) ∈
ℕ0) |
59 | | zexpcl 13725 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ (-(!‘𝑏) + (!‘𝐴)) ∈ ℕ0) →
(2↑(-(!‘𝑏) +
(!‘𝐴))) ∈
ℤ) |
60 | 40, 58, 59 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (2↑(-(!‘𝑏) + (!‘𝐴))) ∈ ℤ) |
61 | 39, 60 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((2↑-(!‘𝑏)) ·
(2↑(!‘𝐴)))
∈ ℤ) |
62 | 34, 61 | eqeltrd 2839 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → ((𝐹‘𝑏) · (2↑(!‘𝐴))) ∈ ℤ) |
63 | 7, 62 | fsumzcl 15375 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈ (1...𝐴)((𝐹‘𝑏) · (2↑(!‘𝐴))) ∈ ℤ) |
64 | 33, 63 | eqeltrd 2839 |
. 2
⊢ (𝐴 ∈ ℕ →
(Σ𝑏 ∈ (1...𝐴)(𝐹‘𝑏) · (2↑(!‘𝐴))) ∈ ℤ) |
65 | 6, 64 | eqeltrd 2839 |
1
⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈
ℤ) |