Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlesge0 | Structured version Visualization version GIF version |
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fsumlesge0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fsumlesge0.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
fsumlesge0.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
fsumlesge0.fi | ⊢ (𝜑 → 𝑌 ∈ Fin) |
Ref | Expression |
---|---|
fsumlesge0 | ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlesge0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | 1 | sge0rnre 43792 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ) |
3 | ressxr 10950 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
5 | 2, 4 | sstrd 3927 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ*) |
6 | fsumlesge0.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | fsumlesge0.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7, 6 | ssexd 5243 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ V) |
9 | elpwg 4533 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) |
11 | 6, 10 | mpbird 256 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑋) |
12 | fsumlesge0.fi | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) | |
13 | 11, 12 | elind 4124 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝒫 𝑋 ∩ Fin)) |
14 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
15 | 14 | cbvsumv 15336 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) |
17 | sumeq1 15328 | . . . . . 6 ⊢ (𝑦 = 𝑌 → Σ𝑧 ∈ 𝑦 (𝐹‘𝑧) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) | |
18 | 17 | rspceeqv 3567 | . . . . 5 ⊢ ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
19 | 13, 16, 18 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
20 | sumex 15327 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V) |
22 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) | |
23 | 22 | elrnmpt 5854 | . . . . 5 ⊢ (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
25 | 19, 24 | mpbird 256 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
26 | supxrub 12987 | . . 3 ⊢ ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ* ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) | |
27 | 5, 25, 26 | syl2anc 583 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
28 | 7, 1 | sge0reval 43800 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
29 | 28 | eqcomd 2744 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < ) = (Σ^‘𝐹)) |
30 | 27, 29 | breqtrd 5096 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 supcsup 9129 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,)cico 13010 Σcsu 15325 Σ^csumge0 43790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 |
This theorem is referenced by: sge0fsum 43815 sge0rnbnd 43821 sge0split 43837 |
Copyright terms: Public domain | W3C validator |