Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumlesge0 Structured version   Visualization version   GIF version

Theorem fsumlesge0 42649
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumlesge0.x (𝜑𝑋𝑉)
fsumlesge0.f (𝜑𝐹:𝑋⟶(0[,)+∞))
fsumlesge0.y (𝜑𝑌𝑋)
fsumlesge0.fi (𝜑𝑌 ∈ Fin)
Assertion
Ref Expression
fsumlesge0 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem fsumlesge0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumlesge0.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21sge0rnre 42636 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ)
3 ressxr 10677 . . . . 5 ℝ ⊆ ℝ*
43a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3975 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ*)
6 fsumlesge0.y . . . . . . 7 (𝜑𝑌𝑋)
7 fsumlesge0.x . . . . . . . . 9 (𝜑𝑋𝑉)
87, 6ssexd 5219 . . . . . . . 8 (𝜑𝑌 ∈ V)
9 elpwg 4543 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
116, 10mpbird 259 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝑋)
12 fsumlesge0.fi . . . . . 6 (𝜑𝑌 ∈ Fin)
1311, 12elind 4169 . . . . 5 (𝜑𝑌 ∈ (𝒫 𝑋 ∩ Fin))
14 fveq2 6663 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1514cbvsumv 15045 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)
1615a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧))
17 sumeq1 15037 . . . . . 6 (𝑦 = 𝑌 → Σ𝑧𝑦 (𝐹𝑧) = Σ𝑧𝑌 (𝐹𝑧))
1817rspceeqv 3636 . . . . 5 ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
1913, 16, 18syl2anc 586 . . . 4 (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
20 sumex 15036 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) ∈ V
2120a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ V)
22 eqid 2819 . . . . . 6 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))
2322elrnmpt 5821 . . . . 5 𝑥𝑌 (𝐹𝑥) ∈ V → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2421, 23syl 17 . . . 4 (𝜑 → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2519, 24mpbird 259 . . 3 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)))
26 supxrub 12709 . . 3 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ* ∧ Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))) → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
275, 25, 26syl2anc 586 . 2 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
287, 1sge0reval 42644 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
2928eqcomd 2825 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ) = (Σ^𝐹))
3027, 29breqtrd 5083 1 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1531  wcel 2108  wrex 3137  Vcvv 3493  cin 3933  wss 3934  𝒫 cpw 4537   class class class wbr 5057  cmpt 5137  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7148  Fincfn 8501  supcsup 8896  cr 10528  0cc0 10529  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  [,)cico 12732  Σcsu 15034  Σ^csumge0 42634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-sumge0 42635
This theorem is referenced by:  sge0fsum  42659  sge0rnbnd  42665  sge0split  42681
  Copyright terms: Public domain W3C validator