Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumlesge0 Structured version   Visualization version   GIF version

Theorem fsumlesge0 46423
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumlesge0.x (𝜑𝑋𝑉)
fsumlesge0.f (𝜑𝐹:𝑋⟶(0[,)+∞))
fsumlesge0.y (𝜑𝑌𝑋)
fsumlesge0.fi (𝜑𝑌 ∈ Fin)
Assertion
Ref Expression
fsumlesge0 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem fsumlesge0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumlesge0.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21sge0rnre 46410 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ)
3 ressxr 11156 . . . . 5 ℝ ⊆ ℝ*
43a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3940 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ*)
6 fsumlesge0.y . . . . . . 7 (𝜑𝑌𝑋)
7 fsumlesge0.x . . . . . . . . 9 (𝜑𝑋𝑉)
87, 6ssexd 5260 . . . . . . . 8 (𝜑𝑌 ∈ V)
9 elpwg 4550 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
116, 10mpbird 257 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝑋)
12 fsumlesge0.fi . . . . . 6 (𝜑𝑌 ∈ Fin)
1311, 12elind 4147 . . . . 5 (𝜑𝑌 ∈ (𝒫 𝑋 ∩ Fin))
14 fveq2 6822 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1514cbvsumv 15603 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)
1615a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧))
17 sumeq1 15596 . . . . . 6 (𝑦 = 𝑌 → Σ𝑧𝑦 (𝐹𝑧) = Σ𝑧𝑌 (𝐹𝑧))
1817rspceeqv 3595 . . . . 5 ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
1913, 16, 18syl2anc 584 . . . 4 (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
20 sumex 15595 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) ∈ V
2120a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ V)
22 eqid 2731 . . . . . 6 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))
2322elrnmpt 5897 . . . . 5 𝑥𝑌 (𝐹𝑥) ∈ V → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2421, 23syl 17 . . . 4 (𝜑 → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2519, 24mpbird 257 . . 3 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)))
26 supxrub 13223 . . 3 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ* ∧ Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))) → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
275, 25, 26syl2anc 584 . 2 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
287, 1sge0reval 46418 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
2928eqcomd 2737 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ) = (Σ^𝐹))
3027, 29breqtrd 5115 1 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cr 11005  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  [,)cico 13247  Σcsu 15593  Σ^csumge0 46408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46409
This theorem is referenced by:  sge0fsum  46433  sge0rnbnd  46439  sge0split  46455
  Copyright terms: Public domain W3C validator