Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumlesge0 Structured version   Visualization version   GIF version

Theorem fsumlesge0 43805
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumlesge0.x (𝜑𝑋𝑉)
fsumlesge0.f (𝜑𝐹:𝑋⟶(0[,)+∞))
fsumlesge0.y (𝜑𝑌𝑋)
fsumlesge0.fi (𝜑𝑌 ∈ Fin)
Assertion
Ref Expression
fsumlesge0 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem fsumlesge0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumlesge0.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21sge0rnre 43792 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ)
3 ressxr 10950 . . . . 5 ℝ ⊆ ℝ*
43a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3927 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ*)
6 fsumlesge0.y . . . . . . 7 (𝜑𝑌𝑋)
7 fsumlesge0.x . . . . . . . . 9 (𝜑𝑋𝑉)
87, 6ssexd 5243 . . . . . . . 8 (𝜑𝑌 ∈ V)
9 elpwg 4533 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
116, 10mpbird 256 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝑋)
12 fsumlesge0.fi . . . . . 6 (𝜑𝑌 ∈ Fin)
1311, 12elind 4124 . . . . 5 (𝜑𝑌 ∈ (𝒫 𝑋 ∩ Fin))
14 fveq2 6756 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1514cbvsumv 15336 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)
1615a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧))
17 sumeq1 15328 . . . . . 6 (𝑦 = 𝑌 → Σ𝑧𝑦 (𝐹𝑧) = Σ𝑧𝑌 (𝐹𝑧))
1817rspceeqv 3567 . . . . 5 ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
1913, 16, 18syl2anc 583 . . . 4 (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
20 sumex 15327 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) ∈ V
2120a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ V)
22 eqid 2738 . . . . . 6 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))
2322elrnmpt 5854 . . . . 5 𝑥𝑌 (𝐹𝑥) ∈ V → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2421, 23syl 17 . . . 4 (𝜑 → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2519, 24mpbird 256 . . 3 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)))
26 supxrub 12987 . . 3 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ* ∧ Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))) → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
275, 25, 26syl2anc 583 . 2 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
287, 1sge0reval 43800 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
2928eqcomd 2744 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ) = (Σ^𝐹))
3027, 29breqtrd 5096 1 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010  Σcsu 15325  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0fsum  43815  sge0rnbnd  43821  sge0split  43837
  Copyright terms: Public domain W3C validator