Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlesge0 | Structured version Visualization version GIF version |
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fsumlesge0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fsumlesge0.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
fsumlesge0.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
fsumlesge0.fi | ⊢ (𝜑 → 𝑌 ∈ Fin) |
Ref | Expression |
---|---|
fsumlesge0 | ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlesge0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | 1 | sge0rnre 43585 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ) |
3 | ressxr 10882 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
5 | 2, 4 | sstrd 3916 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ*) |
6 | fsumlesge0.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | fsumlesge0.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7, 6 | ssexd 5222 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ V) |
9 | elpwg 4521 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) |
11 | 6, 10 | mpbird 260 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑋) |
12 | fsumlesge0.fi | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) | |
13 | 11, 12 | elind 4113 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝒫 𝑋 ∩ Fin)) |
14 | fveq2 6722 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
15 | 14 | cbvsumv 15265 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) |
17 | sumeq1 15257 | . . . . . 6 ⊢ (𝑦 = 𝑌 → Σ𝑧 ∈ 𝑦 (𝐹‘𝑧) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) | |
18 | 17 | rspceeqv 3557 | . . . . 5 ⊢ ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
19 | 13, 16, 18 | syl2anc 587 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
20 | sumex 15256 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V) |
22 | eqid 2737 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) | |
23 | 22 | elrnmpt 5830 | . . . . 5 ⊢ (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
25 | 19, 24 | mpbird 260 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
26 | supxrub 12919 | . . 3 ⊢ ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ* ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) | |
27 | 5, 25, 26 | syl2anc 587 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
28 | 7, 1 | sge0reval 43593 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
29 | 28 | eqcomd 2743 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < ) = (Σ^‘𝐹)) |
30 | 27, 29 | breqtrd 5084 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3413 ∩ cin 3870 ⊆ wss 3871 𝒫 cpw 4518 class class class wbr 5058 ↦ cmpt 5140 ran crn 5557 ⟶wf 6381 ‘cfv 6385 (class class class)co 7218 Fincfn 8631 supcsup 9061 ℝcr 10733 0cc0 10734 +∞cpnf 10869 ℝ*cxr 10871 < clt 10872 ≤ cle 10873 [,)cico 12942 Σcsu 15254 Σ^csumge0 43583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-inf2 9261 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-sup 9063 df-oi 9131 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-n0 12096 df-z 12182 df-uz 12444 df-rp 12592 df-ico 12946 df-icc 12947 df-fz 13101 df-fzo 13244 df-seq 13580 df-exp 13641 df-hash 13902 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-clim 15054 df-sum 15255 df-sumge0 43584 |
This theorem is referenced by: sge0fsum 43608 sge0rnbnd 43614 sge0split 43630 |
Copyright terms: Public domain | W3C validator |