| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlesge0 | Structured version Visualization version GIF version | ||
| Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| fsumlesge0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fsumlesge0.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
| fsumlesge0.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| fsumlesge0.fi | ⊢ (𝜑 → 𝑌 ∈ Fin) |
| Ref | Expression |
|---|---|
| fsumlesge0 | ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumlesge0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
| 2 | 1 | sge0rnre 46360 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ) |
| 3 | ressxr 11284 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
| 5 | 2, 4 | sstrd 3974 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ*) |
| 6 | fsumlesge0.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 7 | fsumlesge0.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | 7, 6 | ssexd 5299 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ V) |
| 9 | elpwg 4583 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) |
| 11 | 6, 10 | mpbird 257 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑋) |
| 12 | fsumlesge0.fi | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) | |
| 13 | 11, 12 | elind 4180 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝒫 𝑋 ∩ Fin)) |
| 14 | fveq2 6881 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 15 | 14 | cbvsumv 15717 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) |
| 17 | sumeq1 15710 | . . . . . 6 ⊢ (𝑦 = 𝑌 → Σ𝑧 ∈ 𝑦 (𝐹‘𝑧) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) | |
| 18 | 17 | rspceeqv 3629 | . . . . 5 ⊢ ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
| 19 | 13, 16, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
| 20 | sumex 15709 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V | |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V) |
| 22 | eqid 2736 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) | |
| 23 | 22 | elrnmpt 5943 | . . . . 5 ⊢ (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
| 24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
| 25 | 19, 24 | mpbird 257 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
| 26 | supxrub 13345 | . . 3 ⊢ ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ* ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) | |
| 27 | 5, 25, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
| 28 | 7, 1 | sge0reval 46368 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
| 29 | 28 | eqcomd 2742 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < ) = (Σ^‘𝐹)) |
| 30 | 27, 29 | breqtrd 5150 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 supcsup 9457 ℝcr 11133 0cc0 11134 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 [,)cico 13369 Σcsu 15707 Σ^csumge0 46358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-sumge0 46359 |
| This theorem is referenced by: sge0fsum 46383 sge0rnbnd 46389 sge0split 46405 |
| Copyright terms: Public domain | W3C validator |