![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumlesge0 | Structured version Visualization version GIF version |
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fsumlesge0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fsumlesge0.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
fsumlesge0.y | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
fsumlesge0.fi | ⊢ (𝜑 → 𝑌 ∈ Fin) |
Ref | Expression |
---|---|
fsumlesge0 | ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlesge0.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | 1 | sge0rnre 45815 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ) |
3 | ressxr 11288 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
5 | 2, 4 | sstrd 3983 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ*) |
6 | fsumlesge0.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | fsumlesge0.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7, 6 | ssexd 5319 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ V) |
9 | elpwg 4601 | . . . . . . . 8 ⊢ (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑌 ∈ 𝒫 𝑋 ↔ 𝑌 ⊆ 𝑋)) |
11 | 6, 10 | mpbird 256 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑋) |
12 | fsumlesge0.fi | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ Fin) | |
13 | 11, 12 | elind 4188 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝒫 𝑋 ∩ Fin)) |
14 | fveq2 6892 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
15 | 14 | cbvsumv 15674 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) |
17 | sumeq1 15667 | . . . . . 6 ⊢ (𝑦 = 𝑌 → Σ𝑧 ∈ 𝑦 (𝐹‘𝑧) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) | |
18 | 17 | rspceeqv 3623 | . . . . 5 ⊢ ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑌 (𝐹‘𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
19 | 13, 16, 18 | syl2anc 582 | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) |
20 | sumex 15666 | . . . . . 6 ⊢ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V | |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V) |
22 | eqid 2725 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) | |
23 | 22 | elrnmpt 5952 | . . . . 5 ⊢ (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ V → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) = Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
25 | 19, 24 | mpbird 256 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) |
26 | supxrub 13335 | . . 3 ⊢ ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)) ⊆ ℝ* ∧ Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧))) → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) | |
27 | 5, 25, 26 | syl2anc 582 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
28 | 7, 1 | sge0reval 45823 | . . 3 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < )) |
29 | 28 | eqcomd 2731 | . 2 ⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧 ∈ 𝑦 (𝐹‘𝑧)), ℝ*, < ) = (Σ^‘𝐹)) |
30 | 27, 29 | breqtrd 5169 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 Vcvv 3463 ∩ cin 3938 ⊆ wss 3939 𝒫 cpw 4598 class class class wbr 5143 ↦ cmpt 5226 ran crn 5673 ⟶wf 6539 ‘cfv 6543 (class class class)co 7416 Fincfn 8962 supcsup 9463 ℝcr 11137 0cc0 11138 +∞cpnf 11275 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 [,)cico 13358 Σcsu 15664 Σ^csumge0 45813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 df-sumge0 45814 |
This theorem is referenced by: sge0fsum 45838 sge0rnbnd 45844 sge0split 45860 |
Copyright terms: Public domain | W3C validator |