Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumlesge0 Structured version   Visualization version   GIF version

Theorem fsumlesge0 46333
Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumlesge0.x (𝜑𝑋𝑉)
fsumlesge0.f (𝜑𝐹:𝑋⟶(0[,)+∞))
fsumlesge0.y (𝜑𝑌𝑋)
fsumlesge0.fi (𝜑𝑌 ∈ Fin)
Assertion
Ref Expression
fsumlesge0 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem fsumlesge0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumlesge0.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21sge0rnre 46320 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ)
3 ressxr 11303 . . . . 5 ℝ ⊆ ℝ*
43a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 4006 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ*)
6 fsumlesge0.y . . . . . . 7 (𝜑𝑌𝑋)
7 fsumlesge0.x . . . . . . . . 9 (𝜑𝑋𝑉)
87, 6ssexd 5330 . . . . . . . 8 (𝜑𝑌 ∈ V)
9 elpwg 4608 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
116, 10mpbird 257 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝑋)
12 fsumlesge0.fi . . . . . 6 (𝜑𝑌 ∈ Fin)
1311, 12elind 4210 . . . . 5 (𝜑𝑌 ∈ (𝒫 𝑋 ∩ Fin))
14 fveq2 6907 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1514cbvsumv 15729 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)
1615a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧))
17 sumeq1 15722 . . . . . 6 (𝑦 = 𝑌 → Σ𝑧𝑦 (𝐹𝑧) = Σ𝑧𝑌 (𝐹𝑧))
1817rspceeqv 3645 . . . . 5 ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
1913, 16, 18syl2anc 584 . . . 4 (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
20 sumex 15721 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) ∈ V
2120a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ V)
22 eqid 2735 . . . . . 6 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))
2322elrnmpt 5972 . . . . 5 𝑥𝑌 (𝐹𝑥) ∈ V → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2421, 23syl 17 . . . 4 (𝜑 → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2519, 24mpbird 257 . . 3 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)))
26 supxrub 13363 . . 3 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ* ∧ Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))) → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
275, 25, 26syl2anc 584 . 2 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
287, 1sge0reval 46328 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
2928eqcomd 2741 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ) = (Σ^𝐹))
3027, 29breqtrd 5174 1 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386  Σcsu 15719  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  sge0fsum  46343  sge0rnbnd  46349  sge0split  46365
  Copyright terms: Public domain W3C validator