MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval Structured version   Visualization version   GIF version

Theorem pntsval 27513
Description: Define the "Selberg function", whose asymptotic behavior is the content of selberg 27489. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
Assertion
Ref Expression
pntsval (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
Distinct variable groups:   𝑖,𝑎,𝑛,𝐴   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑖,𝑎)

Proof of Theorem pntsval
StepHypRef Expression
1 fveq2 6830 . . . . 5 (𝑖 = 𝑛 → (Λ‘𝑖) = (Λ‘𝑛))
2 fveq2 6830 . . . . . 6 (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛))
3 oveq2 7362 . . . . . . 7 (𝑖 = 𝑛 → (𝑎 / 𝑖) = (𝑎 / 𝑛))
43fveq2d 6834 . . . . . 6 (𝑖 = 𝑛 → (ψ‘(𝑎 / 𝑖)) = (ψ‘(𝑎 / 𝑛)))
52, 4oveq12d 7372 . . . . 5 (𝑖 = 𝑛 → ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))) = ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))))
61, 5oveq12d 7372 . . . 4 (𝑖 = 𝑛 → ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))))
76cbvsumv 15607 . . 3 Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑛 ∈ (1...(⌊‘𝑎))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))))
8 fveq2 6830 . . . . 5 (𝑎 = 𝐴 → (⌊‘𝑎) = (⌊‘𝐴))
98oveq2d 7370 . . . 4 (𝑎 = 𝐴 → (1...(⌊‘𝑎)) = (1...(⌊‘𝐴)))
10 fvoveq1 7377 . . . . . . 7 (𝑎 = 𝐴 → (ψ‘(𝑎 / 𝑛)) = (ψ‘(𝐴 / 𝑛)))
1110oveq2d 7370 . . . . . 6 (𝑎 = 𝐴 → ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))) = ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))
1211oveq2d 7370 . . . . 5 (𝑎 = 𝐴 → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
1312adantr 480 . . . 4 ((𝑎 = 𝐴𝑛 ∈ (1...(⌊‘𝑎))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
149, 13sumeq12dv 15617 . . 3 (𝑎 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑎))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
157, 14eqtrid 2780 . 2 (𝑎 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
16 pntsval.1 . 2 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
17 sumex 15599 . 2 Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) ∈ V
1815, 16, 17fvmpt 6937 1 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cmpt 5176  cfv 6488  (class class class)co 7354  cr 11014  1c1 11016   + caddc 11018   · cmul 11020   / cdiv 11783  ...cfz 13411  cfl 13698  Σcsu 15597  logclog 26493  Λcvma 27032  ψcchp 27033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-seq 13913  df-sum 15598
This theorem is referenced by:  selbergs  27515  selbergsb  27516  pntsval2  27517
  Copyright terms: Public domain W3C validator