MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Visualization version   GIF version

Theorem aaliou3lem7 26329
Description: Lemma for aaliou3 26331. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem7 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 12257 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
2 eqid 2725 . . . 4 (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1))))) = (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1)))))
3 aaliou3lem.c . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
42, 3aaliou3lem3 26324 . . 3 ((𝐴 + 1) ∈ ℕ → (seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
5 3simpc 1147 . . 3 ((seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
61, 4, 53syl 18 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
7 nncn 12253 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8 ax-1cn 11198 . . . . . . . . . . . 12 1 ∈ ℂ
9 pncan 11498 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
107, 8, 9sylancl 584 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
1110oveq2d 7435 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...((𝐴 + 1) − 1)) = (1...𝐴))
1211sumeq1d 15683 . . . . . . . . 9 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
1312oveq1d 7434 . . . . . . . 8 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
14 nnuz 12898 . . . . . . . . 9 ℕ = (ℤ‘1)
15 eqid 2725 . . . . . . . . 9 (ℤ‘(𝐴 + 1)) = (ℤ‘(𝐴 + 1))
16 eqidd 2726 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) = (𝐹𝑏))
17 fveq2 6896 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1817negeqd 11486 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1918oveq2d 7435 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
20 ovex 7452 . . . . . . . . . . . 12 (2↑-(!‘𝑏)) ∈ V
2119, 3, 20fvmpt 7004 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
22 2rp 13014 . . . . . . . . . . . . 13 2 ∈ ℝ+
23 nnnn0 12512 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
24 faccl 14278 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0 → (!‘𝑏) ∈ ℕ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
2625nnzd 12618 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
2726znegcld 12701 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
28 rpexpcl 14081 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2922, 27, 28sylancr 585 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
3029rpcnd 13053 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℂ)
3121, 30eqeltrd 2825 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℂ)
3231adantl 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) ∈ ℂ)
33 1nn 12256 . . . . . . . . . 10 1 ∈ ℕ
34 eqid 2725 . . . . . . . . . . . 12 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
3534, 3aaliou3lem3 26324 . . . . . . . . . . 11 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
3635simp1d 1139 . . . . . . . . . 10 (1 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3733, 36mp1i 13 . . . . . . . . 9 (𝐴 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3814, 15, 1, 16, 32, 37isumsplit 15822 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ ℕ (𝐹𝑏) = (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
39 oveq2 7427 . . . . . . . . . . 11 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
4039sumeq1d 15683 . . . . . . . . . 10 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
41 aaliou3lem.e . . . . . . . . . 10 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
42 sumex 15670 . . . . . . . . . 10 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
4340, 41, 42fvmpt 7004 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
4443oveq1d 7434 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
4513, 38, 443eqtr4rd 2776 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = Σ𝑏 ∈ ℕ (𝐹𝑏))
46 aaliou3lem.d . . . . . . 7 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4745, 46eqtr4di 2783 . . . . . 6 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿)
483, 46, 41aaliou3lem4 26326 . . . . . . . . 9 𝐿 ∈ ℝ
4948recni 11260 . . . . . . . 8 𝐿 ∈ ℂ
5049a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 𝐿 ∈ ℂ)
513, 46, 41aaliou3lem5 26327 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
5251recnd 11274 . . . . . . 7 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℂ)
534simp2d 1140 . . . . . . . . 9 ((𝐴 + 1) ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
541, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
5554rpcnd 13053 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℂ)
5650, 52, 55subaddd 11621 . . . . . 6 (𝐴 ∈ ℕ → ((𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ↔ ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿))
5747, 56mpbird 256 . . . . 5 (𝐴 ∈ ℕ → (𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏))
5857eqcomd 2731 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)))
59 eleq1 2813 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
60 breq1 5152 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
6159, 60anbi12d 630 . . . 4 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6258, 61syl 17 . . 3 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6351adantr 479 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ∈ ℝ)
64 simprl 769 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ∈ ℝ+)
65 difrp 13047 . . . . . . . 8 (((𝐻𝐴) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6663, 48, 65sylancl 584 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6764, 66mpbird 256 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) < 𝐿)
6863, 67ltned 11382 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ≠ 𝐿)
69 nnnn0 12512 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ → (𝐴 + 1) ∈ ℕ0)
70 faccl 14278 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ0 → (!‘(𝐴 + 1)) ∈ ℕ)
711, 69, 703syl 18 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℕ)
7271nnzd 12618 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℤ)
7372znegcld 12701 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → -(!‘(𝐴 + 1)) ∈ ℤ)
74 rpexpcl 14081 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝐴 + 1)) ∈ ℤ) → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
7522, 73, 74sylancr 585 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
76 rpmulcl 13032 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝐴 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7722, 75, 76sylancr 585 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7877adantr 479 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7978rpred 13051 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ)
8063, 79resubcld 11674 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ∈ ℝ)
8148a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ∈ ℝ)
8263, 78ltsubrpd 13083 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < (𝐻𝐴))
8380, 63, 81, 82, 67lttrd 11407 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < 𝐿)
8480, 81, 83ltled 11394 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿)
85 simprr 771 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
8681, 63, 79lesubadd2d 11845 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1)))))))
8785, 86mpbid 231 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))
8881, 63, 79absdifled 15417 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))))
8984, 87, 88mpbir2and 711 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
9068, 89jca 510 . . . 4 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
9190ex 411 . . 3 (𝐴 ∈ ℕ → (((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
9262, 91sylbid 239 . 2 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
936, 92mpd 15 1 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cmpt 5232  dom cdm 5678  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  1c1 11141   + caddc 11143   · cmul 11145   < clt 11280  cle 11281  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  2c2 12300  0cn0 12505  cz 12591  cuz 12855  +crp 13009  ...cfz 13519  seqcseq 14002  cexp 14062  !cfa 14268  abscabs 15217  cli 15464  Σcsu 15668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-ioc 13364  df-ico 13365  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-fac 14269  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669
This theorem is referenced by:  aaliou3lem9  26330
  Copyright terms: Public domain W3C validator