MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Visualization version   GIF version

Theorem aaliou3lem7 25109
Description: Lemma for aaliou3 25111. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem7 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 11740 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
2 eqid 2739 . . . 4 (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1))))) = (𝑐 ∈ (ℤ‘(𝐴 + 1)) ↦ ((2↑-(!‘(𝐴 + 1))) · ((1 / 2)↑(𝑐 − (𝐴 + 1)))))
3 aaliou3lem.c . . . 4 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
42, 3aaliou3lem3 25104 . . 3 ((𝐴 + 1) ∈ ℕ → (seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
5 3simpc 1151 . . 3 ((seq(𝐴 + 1)( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
61, 4, 53syl 18 . 2 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
7 nncn 11736 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
8 ax-1cn 10685 . . . . . . . . . . . 12 1 ∈ ℂ
9 pncan 10982 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
107, 8, 9sylancl 589 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
1110oveq2d 7198 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...((𝐴 + 1) − 1)) = (1...𝐴))
1211sumeq1d 15163 . . . . . . . . 9 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
1312oveq1d 7197 . . . . . . . 8 (𝐴 ∈ ℕ → (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
14 nnuz 12375 . . . . . . . . 9 ℕ = (ℤ‘1)
15 eqid 2739 . . . . . . . . 9 (ℤ‘(𝐴 + 1)) = (ℤ‘(𝐴 + 1))
16 eqidd 2740 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) = (𝐹𝑏))
17 fveq2 6686 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
1817negeqd 10970 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1918oveq2d 7198 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
20 ovex 7215 . . . . . . . . . . . 12 (2↑-(!‘𝑏)) ∈ V
2119, 3, 20fvmpt 6787 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
22 2rp 12489 . . . . . . . . . . . . 13 2 ∈ ℝ+
23 nnnn0 11995 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
24 faccl 13747 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℕ0 → (!‘𝑏) ∈ ℕ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
2625nnzd 12179 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
2726znegcld 12182 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
28 rpexpcl 13552 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2922, 27, 28sylancr 590 . . . . . . . . . . . 12 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
3029rpcnd 12528 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℂ)
3121, 30eqeltrd 2834 . . . . . . . . . 10 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℂ)
3231adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝐹𝑏) ∈ ℂ)
33 1nn 11739 . . . . . . . . . 10 1 ∈ ℕ
34 eqid 2739 . . . . . . . . . . . 12 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
3534, 3aaliou3lem3 25104 . . . . . . . . . . 11 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
3635simp1d 1143 . . . . . . . . . 10 (1 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3733, 36mp1i 13 . . . . . . . . 9 (𝐴 ∈ ℕ → seq1( + , 𝐹) ∈ dom ⇝ )
3814, 15, 1, 16, 32, 37isumsplit 15300 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ ℕ (𝐹𝑏) = (Σ𝑏 ∈ (1...((𝐴 + 1) − 1))(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
39 oveq2 7190 . . . . . . . . . . 11 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
4039sumeq1d 15163 . . . . . . . . . 10 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
41 aaliou3lem.e . . . . . . . . . 10 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
42 sumex 15149 . . . . . . . . . 10 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
4340, 41, 42fvmpt 6787 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
4443oveq1d 7197 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = (Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)))
4513, 38, 443eqtr4rd 2785 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = Σ𝑏 ∈ ℕ (𝐹𝑏))
46 aaliou3lem.d . . . . . . 7 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4745, 46eqtr4di 2792 . . . . . 6 (𝐴 ∈ ℕ → ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿)
483, 46, 41aaliou3lem4 25106 . . . . . . . . 9 𝐿 ∈ ℝ
4948recni 10745 . . . . . . . 8 𝐿 ∈ ℂ
5049a1i 11 . . . . . . 7 (𝐴 ∈ ℕ → 𝐿 ∈ ℂ)
513, 46, 41aaliou3lem5 25107 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
5251recnd 10759 . . . . . . 7 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℂ)
534simp2d 1144 . . . . . . . . 9 ((𝐴 + 1) ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
541, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+)
5554rpcnd 12528 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℂ)
5650, 52, 55subaddd 11105 . . . . . 6 (𝐴 ∈ ℕ → ((𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ↔ ((𝐻𝐴) + Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏)) = 𝐿))
5747, 56mpbird 260 . . . . 5 (𝐴 ∈ ℕ → (𝐿 − (𝐻𝐴)) = Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏))
5857eqcomd 2745 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)))
59 eleq1 2821 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
60 breq1 5043 . . . . 5 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → (Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
6159, 60anbi12d 634 . . . 4 𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) = (𝐿 − (𝐻𝐴)) → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6258, 61syl 17 . . 3 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) ↔ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
6351adantr 484 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ∈ ℝ)
64 simprl 771 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ∈ ℝ+)
65 difrp 12522 . . . . . . . 8 (((𝐻𝐴) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6663, 48, 65sylancl 589 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) < 𝐿 ↔ (𝐿 − (𝐻𝐴)) ∈ ℝ+))
6764, 66mpbird 260 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) < 𝐿)
6863, 67ltned 10866 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐻𝐴) ≠ 𝐿)
69 nnnn0 11995 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ → (𝐴 + 1) ∈ ℕ0)
70 faccl 13747 . . . . . . . . . . . . . . 15 ((𝐴 + 1) ∈ ℕ0 → (!‘(𝐴 + 1)) ∈ ℕ)
711, 69, 703syl 18 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℕ)
7271nnzd 12179 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (!‘(𝐴 + 1)) ∈ ℤ)
7372znegcld 12182 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → -(!‘(𝐴 + 1)) ∈ ℤ)
74 rpexpcl 13552 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝐴 + 1)) ∈ ℤ) → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
7522, 73, 74sylancr 590 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑-(!‘(𝐴 + 1))) ∈ ℝ+)
76 rpmulcl 12507 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝐴 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7722, 75, 76sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7877adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ+)
7978rpred 12526 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (2 · (2↑-(!‘(𝐴 + 1)))) ∈ ℝ)
8063, 79resubcld 11158 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ∈ ℝ)
8148a1i 11 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ∈ ℝ)
8263, 78ltsubrpd 12558 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < (𝐻𝐴))
8380, 63, 81, 82, 67lttrd 10891 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) < 𝐿)
8480, 81, 83ltled 10878 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿)
85 simprr 773 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
8681, 63, 79lesubadd2d 11329 . . . . . . 7 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1)))))))
8785, 86mpbid 235 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → 𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))
8881, 63, 79absdifled 14896 . . . . . 6 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))) ↔ (((𝐻𝐴) − (2 · (2↑-(!‘(𝐴 + 1))))) ≤ 𝐿𝐿 ≤ ((𝐻𝐴) + (2 · (2↑-(!‘(𝐴 + 1))))))))
8984, 87, 88mpbir2and 713 . . . . 5 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))
9068, 89jca 515 . . . 4 ((𝐴 ∈ ℕ ∧ ((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
9190ex 416 . . 3 (𝐴 ∈ ℕ → (((𝐿 − (𝐻𝐴)) ∈ ℝ+ ∧ (𝐿 − (𝐻𝐴)) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
9262, 91sylbid 243 . 2 (𝐴 ∈ ℕ → ((Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘(𝐴 + 1))(𝐹𝑏) ≤ (2 · (2↑-(!‘(𝐴 + 1))))) → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))))
936, 92mpd 15 1 (𝐴 ∈ ℕ → ((𝐻𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935   class class class wbr 5040  cmpt 5120  dom cdm 5535  cfv 6349  (class class class)co 7182  cc 10625  cr 10626  1c1 10628   + caddc 10630   · cmul 10632   < clt 10765  cle 10766  cmin 10960  -cneg 10961   / cdiv 11387  cn 11728  2c2 11783  0cn0 11988  cz 12074  cuz 12336  +crp 12484  ...cfz 12993  seqcseq 13472  cexp 13533  !cfa 13737  abscabs 14695  cli 14943  Σcsu 15147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-pm 8452  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-sup 8991  df-inf 8992  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-n0 11989  df-z 12075  df-uz 12337  df-rp 12485  df-ioc 12838  df-ico 12839  df-fz 12994  df-fzo 13137  df-fl 13265  df-seq 13473  df-exp 13534  df-fac 13738  df-hash 13795  df-shft 14528  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-limsup 14930  df-clim 14947  df-rlim 14948  df-sum 15148
This theorem is referenced by:  aaliou3lem9  25110
  Copyright terms: Public domain W3C validator