MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Structured version   Visualization version   GIF version

Theorem logsqvma2 26239
Description: The Möbius inverse of logsqvma 26238. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Distinct variable group:   𝑥,𝑑,𝑁

Proof of Theorem logsqvma2
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13403 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1...𝑘) ∈ Fin)
2 dvdsssfz1 15732 . . . . . . . . . 10 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ (1...𝑘))
31, 2ssfid 8791 . . . . . . . . 9 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ∈ Fin)
4 ssrab2 3986 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ ℕ
5 simpr 488 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
64, 5sseldi 3892 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ ℕ)
7 vmacl 25815 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
86, 7syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘𝑑) ∈ ℝ)
9 dvdsdivcl 15730 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
104, 9sseldi 3892 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ ℕ)
11 vmacl 25815 . . . . . . . . . . 11 ((𝑘 / 𝑑) ∈ ℕ → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
138, 12remulcld 10722 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
143, 13fsumrecl 15152 . . . . . . . 8 (𝑘 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
15 vmacl 25815 . . . . . . . . 9 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
16 nnrp 12454 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1716relogcld 25326 . . . . . . . . 9 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
1815, 17remulcld 10722 . . . . . . . 8 (𝑘 ∈ ℕ → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
1914, 18readdcld 10721 . . . . . . 7 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℝ)
2019recnd 10720 . . . . . 6 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2120adantl 485 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2221fmpttd 6876 . . . 4 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))):ℕ⟶ℂ)
23 ssrab2 3986 . . . . . . . . 9 {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ ℕ
24 simpr 488 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})
2523, 24sseldi 3892 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ ℕ)
26 breq2 5040 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑥𝑘𝑥𝑚))
2726rabbidv 3392 . . . . . . . . . . 11 (𝑘 = 𝑚 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑚})
28 fvoveq1 7179 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑚 / 𝑑)))
2928oveq2d 7172 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
3029adantr 484 . . . . . . . . . . 11 ((𝑘 = 𝑚𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
3127, 30sumeq12dv 15124 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
32 fveq2 6663 . . . . . . . . . . 11 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
33 fveq2 6663 . . . . . . . . . . 11 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
3432, 33oveq12d 7174 . . . . . . . . . 10 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
3531, 34oveq12d 7174 . . . . . . . . 9 (𝑘 = 𝑚 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
36 eqid 2758 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))
37 ovex 7189 . . . . . . . . 9 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ V
3835, 36, 37fvmpt3i 6769 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
3925, 38syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
4039sumeq2dv 15121 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
41 logsqvma 26238 . . . . . . 7 (𝑛 ∈ ℕ → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4241adantl 485 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4340, 42eqtr2d 2794 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((log‘𝑛)↑2) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚))
4443mpteq2dva 5131 . . . 4 (𝑁 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚)))
4522, 44muinv 25890 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))))
4645fveq1d 6665 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁))
47 breq2 5040 . . . . . 6 (𝑘 = 𝑁 → (𝑥𝑘𝑥𝑁))
4847rabbidv 3392 . . . . 5 (𝑘 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
49 fvoveq1 7179 . . . . . . 7 (𝑘 = 𝑁 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑁 / 𝑑)))
5049oveq2d 7172 . . . . . 6 (𝑘 = 𝑁 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5150adantr 484 . . . . 5 ((𝑘 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5248, 51sumeq12dv 15124 . . . 4 (𝑘 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
53 fveq2 6663 . . . . 5 (𝑘 = 𝑁 → (Λ‘𝑘) = (Λ‘𝑁))
54 fveq2 6663 . . . . 5 (𝑘 = 𝑁 → (log‘𝑘) = (log‘𝑁))
5553, 54oveq12d 7174 . . . 4 (𝑘 = 𝑁 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑁) · (log‘𝑁)))
5652, 55oveq12d 7174 . . 3 (𝑘 = 𝑁 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
5756, 36, 37fvmpt3i 6769 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
58 fveq2 6663 . . . . . 6 (𝑗 = 𝑑 → (μ‘𝑗) = (μ‘𝑑))
59 oveq2 7164 . . . . . . . 8 (𝑗 = 𝑑 → (𝑖 / 𝑗) = (𝑖 / 𝑑))
6059fveq2d 6667 . . . . . . 7 (𝑗 = 𝑑 → (log‘(𝑖 / 𝑗)) = (log‘(𝑖 / 𝑑)))
6160oveq1d 7171 . . . . . 6 (𝑗 = 𝑑 → ((log‘(𝑖 / 𝑗))↑2) = ((log‘(𝑖 / 𝑑))↑2))
6258, 61oveq12d 7174 . . . . 5 (𝑗 = 𝑑 → ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)))
6362cbvsumv 15114 . . . 4 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2))
64 breq2 5040 . . . . . 6 (𝑖 = 𝑁 → (𝑥𝑖𝑥𝑁))
6564rabbidv 3392 . . . . 5 (𝑖 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑖} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
66 fvoveq1 7179 . . . . . . . 8 (𝑖 = 𝑁 → (log‘(𝑖 / 𝑑)) = (log‘(𝑁 / 𝑑)))
6766oveq1d 7171 . . . . . . 7 (𝑖 = 𝑁 → ((log‘(𝑖 / 𝑑))↑2) = ((log‘(𝑁 / 𝑑))↑2))
6867oveq2d 7172 . . . . . 6 (𝑖 = 𝑁 → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6968adantr 484 . . . . 5 ((𝑖 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7065, 69sumeq12dv 15124 . . . 4 (𝑖 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7163, 70syl5eq 2805 . . 3 (𝑖 = 𝑁 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
72 ssrab2 3986 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑖} ⊆ ℕ
73 dvdsdivcl 15730 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖})
7472, 73sseldi 3892 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ ℕ)
75 fveq2 6663 . . . . . . . . 9 (𝑛 = (𝑖 / 𝑗) → (log‘𝑛) = (log‘(𝑖 / 𝑗)))
7675oveq1d 7171 . . . . . . . 8 (𝑛 = (𝑖 / 𝑗) → ((log‘𝑛)↑2) = ((log‘(𝑖 / 𝑗))↑2))
77 eqid 2758 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))
78 ovex 7189 . . . . . . . 8 ((log‘𝑛)↑2) ∈ V
7976, 77, 78fvmpt3i 6769 . . . . . . 7 ((𝑖 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
8074, 79syl 17 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
8180oveq2d 7172 . . . . 5 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8281sumeq2dv 15121 . . . 4 (𝑖 ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8382mpteq2ia 5127 . . 3 (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
84 sumex 15105 . . 3 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) ∈ V
8571, 83, 84fvmpt3i 6769 . 2 (𝑁 ∈ ℕ → ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
8646, 57, 853eqtr3rd 2802 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3074   class class class wbr 5036  cmpt 5116  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  1c1 10589   + caddc 10591   · cmul 10593   / cdiv 11348  cn 11687  2c2 11742  ...cfz 12952  cexp 13492  Σcsu 15103  cdvds 15668  logclog 25258  Λcvma 25789  μcmu 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-disj 5002  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-oadd 8122  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-fi 8921  df-sup 8952  df-inf 8953  df-oi 9020  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ioc 12797  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-fac 13697  df-bc 13726  df-hash 13754  df-shft 14487  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-limsup 14889  df-clim 14906  df-rlim 14907  df-sum 15104  df-ef 15482  df-sin 15484  df-cos 15485  df-pi 15487  df-dvds 15669  df-gcd 15907  df-prm 16081  df-pc 16242  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-hom 16660  df-cco 16661  df-rest 16767  df-topn 16768  df-0g 16786  df-gsum 16787  df-topgen 16788  df-pt 16789  df-prds 16792  df-xrs 16846  df-qtop 16851  df-imas 16852  df-xps 16854  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-mulg 18305  df-cntz 18527  df-cmn 18988  df-psmet 20171  df-xmet 20172  df-met 20173  df-bl 20174  df-mopn 20175  df-fbas 20176  df-fg 20177  df-cnfld 20180  df-top 21607  df-topon 21624  df-topsp 21646  df-bases 21659  df-cld 21732  df-ntr 21733  df-cls 21734  df-nei 21811  df-lp 21849  df-perf 21850  df-cn 21940  df-cnp 21941  df-haus 22028  df-tx 22275  df-hmeo 22468  df-fil 22559  df-fm 22651  df-flim 22652  df-flf 22653  df-xms 23035  df-ms 23036  df-tms 23037  df-cncf 23592  df-limc 24578  df-dv 24579  df-log 25260  df-vma 25795  df-mu 25798
This theorem is referenced by:  selberg  26244
  Copyright terms: Public domain W3C validator