Step | Hyp | Ref
| Expression |
1 | | fzfid 13621 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(1...𝑘) ∈
Fin) |
2 | | dvdsssfz1 15955 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ⊆ (1...𝑘)) |
3 | 1, 2 | ssfid 8971 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ∈ Fin) |
4 | | ssrab2 4009 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ⊆ ℕ |
5 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) |
6 | 4, 5 | sselid 3915 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → 𝑑 ∈ ℕ) |
7 | | vmacl 26172 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) |
8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → (Λ‘𝑑) ∈ ℝ) |
9 | | dvdsdivcl 15953 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → (𝑘 / 𝑑) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) |
10 | 4, 9 | sselid 3915 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → (𝑘 / 𝑑) ∈ ℕ) |
11 | | vmacl 26172 |
. . . . . . . . . . 11
⊢ ((𝑘 / 𝑑) ∈ ℕ →
(Λ‘(𝑘 / 𝑑)) ∈
ℝ) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → (Λ‘(𝑘 / 𝑑)) ∈ ℝ) |
13 | 8, 12 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ) |
14 | 3, 13 | fsumrecl 15374 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ) |
15 | | vmacl 26172 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(Λ‘𝑘) ∈
ℝ) |
16 | | nnrp 12670 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
17 | 16 | relogcld 25683 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(log‘𝑘) ∈
ℝ) |
18 | 15, 17 | remulcld 10936 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ →
((Λ‘𝑘)
· (log‘𝑘))
∈ ℝ) |
19 | 14, 18 | readdcld 10935 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ →
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℝ) |
20 | 19 | recnd 10934 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ) |
21 | 20 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ) →
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ) |
22 | 21 | fmpttd 6971 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))):ℕ⟶ℂ) |
23 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ⊆ ℕ |
24 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) |
25 | 23, 24 | sselid 3915 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → 𝑚 ∈ ℕ) |
26 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (𝑥 ∥ 𝑘 ↔ 𝑥 ∥ 𝑚)) |
27 | 26 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚}) |
28 | | fvoveq1 7278 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑚 / 𝑑))) |
29 | 28 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑)))) |
30 | 29 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑘 = 𝑚 ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑)))) |
31 | 27, 30 | sumeq12dv 15346 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑)))) |
32 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚)) |
33 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚)) |
34 | 32, 33 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚))) |
35 | 31, 34 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚)))) |
36 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ ↦
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) |
37 | | ovex 7288 |
. . . . . . . . 9
⊢
(Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑘} ((Λ‘𝑑) ·
(Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ V |
38 | 35, 36, 37 | fvmpt3i 6862 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ↦
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚)))) |
39 | 25, 38 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛}) → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚)))) |
40 | 39 | sumeq2dv 15343 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) →
Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚)))) |
41 | | logsqvma 26595 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2)) |
42 | 41 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) →
Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2)) |
43 | 40, 42 | eqtr2d 2779 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) →
((log‘𝑛)↑2) =
Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚)) |
44 | 43 | mpteq2dva 5170 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑛 ∈ ℕ ↦
((log‘𝑛)↑2)) =
(𝑛 ∈ ℕ ↦
Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚))) |
45 | 22, 44 | muinv 26247 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))) |
46 | 45 | fveq1d 6758 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁)) |
47 | | breq2 5074 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑥 ∥ 𝑘 ↔ 𝑥 ∥ 𝑁)) |
48 | 47 | rabbidv 3404 |
. . . . 5
⊢ (𝑘 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
49 | | fvoveq1 7278 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑁 / 𝑑))) |
50 | 49 | oveq2d 7271 |
. . . . . 6
⊢ (𝑘 = 𝑁 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑)))) |
51 | 50 | adantr 480 |
. . . . 5
⊢ ((𝑘 = 𝑁 ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑)))) |
52 | 48, 51 | sumeq12dv 15346 |
. . . 4
⊢ (𝑘 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑)))) |
53 | | fveq2 6756 |
. . . . 5
⊢ (𝑘 = 𝑁 → (Λ‘𝑘) = (Λ‘𝑁)) |
54 | | fveq2 6756 |
. . . . 5
⊢ (𝑘 = 𝑁 → (log‘𝑘) = (log‘𝑁)) |
55 | 53, 54 | oveq12d 7273 |
. . . 4
⊢ (𝑘 = 𝑁 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑁) · (log‘𝑁))) |
56 | 52, 55 | oveq12d 7273 |
. . 3
⊢ (𝑘 = 𝑁 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁)))) |
57 | 56, 36, 37 | fvmpt3i 6862 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁)))) |
58 | | fveq2 6756 |
. . . . . 6
⊢ (𝑗 = 𝑑 → (μ‘𝑗) = (μ‘𝑑)) |
59 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑗 = 𝑑 → (𝑖 / 𝑗) = (𝑖 / 𝑑)) |
60 | 59 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑗 = 𝑑 → (log‘(𝑖 / 𝑗)) = (log‘(𝑖 / 𝑑))) |
61 | 60 | oveq1d 7270 |
. . . . . 6
⊢ (𝑗 = 𝑑 → ((log‘(𝑖 / 𝑗))↑2) = ((log‘(𝑖 / 𝑑))↑2)) |
62 | 58, 61 | oveq12d 7273 |
. . . . 5
⊢ (𝑗 = 𝑑 → ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2))) |
63 | 62 | cbvsumv 15336 |
. . . 4
⊢
Σ𝑗 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) |
64 | | breq2 5074 |
. . . . . 6
⊢ (𝑖 = 𝑁 → (𝑥 ∥ 𝑖 ↔ 𝑥 ∥ 𝑁)) |
65 | 64 | rabbidv 3404 |
. . . . 5
⊢ (𝑖 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
66 | | fvoveq1 7278 |
. . . . . . . 8
⊢ (𝑖 = 𝑁 → (log‘(𝑖 / 𝑑)) = (log‘(𝑁 / 𝑑))) |
67 | 66 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑖 = 𝑁 → ((log‘(𝑖 / 𝑑))↑2) = ((log‘(𝑁 / 𝑑))↑2)) |
68 | 67 | oveq2d 7271 |
. . . . . 6
⊢ (𝑖 = 𝑁 → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2))) |
69 | 68 | adantr 480 |
. . . . 5
⊢ ((𝑖 = 𝑁 ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖}) → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2))) |
70 | 65, 69 | sumeq12dv 15346 |
. . . 4
⊢ (𝑖 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2))) |
71 | 63, 70 | syl5eq 2791 |
. . 3
⊢ (𝑖 = 𝑁 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2))) |
72 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ⊆ ℕ |
73 | | dvdsdivcl 15953 |
. . . . . . . 8
⊢ ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖}) → (𝑖 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖}) |
74 | 72, 73 | sselid 3915 |
. . . . . . 7
⊢ ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖}) → (𝑖 / 𝑗) ∈ ℕ) |
75 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑛 = (𝑖 / 𝑗) → (log‘𝑛) = (log‘(𝑖 / 𝑗))) |
76 | 75 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑛 = (𝑖 / 𝑗) → ((log‘𝑛)↑2) = ((log‘(𝑖 / 𝑗))↑2)) |
77 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
((log‘𝑛)↑2)) =
(𝑛 ∈ ℕ ↦
((log‘𝑛)↑2)) |
78 | | ovex 7288 |
. . . . . . . 8
⊢
((log‘𝑛)↑2) ∈ V |
79 | 76, 77, 78 | fvmpt3i 6862 |
. . . . . . 7
⊢ ((𝑖 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2)) |
80 | 74, 79 | syl 17 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖}) → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2)) |
81 | 80 | oveq2d 7271 |
. . . . 5
⊢ ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖}) → ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2))) |
82 | 81 | sumeq2dv 15343 |
. . . 4
⊢ (𝑖 ∈ ℕ →
Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2))) |
83 | 82 | mpteq2ia 5173 |
. . 3
⊢ (𝑖 ∈ ℕ ↦
Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2))) |
84 | | sumex 15327 |
. . 3
⊢
Σ𝑗 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) ∈ V |
85 | 71, 83, 84 | fvmpt3i 6862 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑖 ∈ ℕ ↦
Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2))) |
86 | 46, 57, 85 | 3eqtr3rd 2787 |
1
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁)))) |