MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Structured version   Visualization version   GIF version

Theorem logsqvma2 27482
Description: The Möbius inverse of logsqvma 27481. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Distinct variable group:   𝑥,𝑑,𝑁

Proof of Theorem logsqvma2
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsfi 16702 . . . . . . . . 9 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ∈ Fin)
2 ssrab2 4029 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ ℕ
3 simpr 484 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
42, 3sselid 3928 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ ℕ)
5 vmacl 27056 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘𝑑) ∈ ℝ)
7 dvdsdivcl 16229 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
82, 7sselid 3928 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ ℕ)
9 vmacl 27056 . . . . . . . . . . 11 ((𝑘 / 𝑑) ∈ ℕ → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
108, 9syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
116, 10remulcld 11149 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
121, 11fsumrecl 15643 . . . . . . . 8 (𝑘 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
13 vmacl 27056 . . . . . . . . 9 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
14 nnrp 12904 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514relogcld 26560 . . . . . . . . 9 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
1613, 15remulcld 11149 . . . . . . . 8 (𝑘 ∈ ℕ → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
1712, 16readdcld 11148 . . . . . . 7 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℝ)
1817recnd 11147 . . . . . 6 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
1918adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2019fmpttd 7054 . . . 4 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))):ℕ⟶ℂ)
21 ssrab2 4029 . . . . . . . . 9 {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ ℕ
22 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})
2321, 22sselid 3928 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ ℕ)
24 breq2 5097 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑥𝑘𝑥𝑚))
2524rabbidv 3403 . . . . . . . . . . 11 (𝑘 = 𝑚 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑚})
26 fvoveq1 7375 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑚 / 𝑑)))
2726oveq2d 7368 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
2827adantr 480 . . . . . . . . . . 11 ((𝑘 = 𝑚𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
2925, 28sumeq12dv 15615 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
30 fveq2 6828 . . . . . . . . . . 11 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
31 fveq2 6828 . . . . . . . . . . 11 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
3230, 31oveq12d 7370 . . . . . . . . . 10 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
3329, 32oveq12d 7370 . . . . . . . . 9 (𝑘 = 𝑚 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
34 eqid 2733 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))
35 ovex 7385 . . . . . . . . 9 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ V
3633, 34, 35fvmpt3i 6940 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
3723, 36syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
3837sumeq2dv 15611 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
39 logsqvma 27481 . . . . . . 7 (𝑛 ∈ ℕ → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4039adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4138, 40eqtr2d 2769 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((log‘𝑛)↑2) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚))
4241mpteq2dva 5186 . . . 4 (𝑁 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚)))
4320, 42muinv 27131 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))))
4443fveq1d 6830 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁))
45 breq2 5097 . . . . . 6 (𝑘 = 𝑁 → (𝑥𝑘𝑥𝑁))
4645rabbidv 3403 . . . . 5 (𝑘 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
47 fvoveq1 7375 . . . . . . 7 (𝑘 = 𝑁 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑁 / 𝑑)))
4847oveq2d 7368 . . . . . 6 (𝑘 = 𝑁 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
4948adantr 480 . . . . 5 ((𝑘 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5046, 49sumeq12dv 15615 . . . 4 (𝑘 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
51 fveq2 6828 . . . . 5 (𝑘 = 𝑁 → (Λ‘𝑘) = (Λ‘𝑁))
52 fveq2 6828 . . . . 5 (𝑘 = 𝑁 → (log‘𝑘) = (log‘𝑁))
5351, 52oveq12d 7370 . . . 4 (𝑘 = 𝑁 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑁) · (log‘𝑁)))
5450, 53oveq12d 7370 . . 3 (𝑘 = 𝑁 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
5554, 34, 35fvmpt3i 6940 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
56 fveq2 6828 . . . . . 6 (𝑗 = 𝑑 → (μ‘𝑗) = (μ‘𝑑))
57 oveq2 7360 . . . . . . . 8 (𝑗 = 𝑑 → (𝑖 / 𝑗) = (𝑖 / 𝑑))
5857fveq2d 6832 . . . . . . 7 (𝑗 = 𝑑 → (log‘(𝑖 / 𝑗)) = (log‘(𝑖 / 𝑑)))
5958oveq1d 7367 . . . . . 6 (𝑗 = 𝑑 → ((log‘(𝑖 / 𝑗))↑2) = ((log‘(𝑖 / 𝑑))↑2))
6056, 59oveq12d 7370 . . . . 5 (𝑗 = 𝑑 → ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)))
6160cbvsumv 15605 . . . 4 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2))
62 breq2 5097 . . . . . 6 (𝑖 = 𝑁 → (𝑥𝑖𝑥𝑁))
6362rabbidv 3403 . . . . 5 (𝑖 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑖} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
64 fvoveq1 7375 . . . . . . . 8 (𝑖 = 𝑁 → (log‘(𝑖 / 𝑑)) = (log‘(𝑁 / 𝑑)))
6564oveq1d 7367 . . . . . . 7 (𝑖 = 𝑁 → ((log‘(𝑖 / 𝑑))↑2) = ((log‘(𝑁 / 𝑑))↑2))
6665oveq2d 7368 . . . . . 6 (𝑖 = 𝑁 → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6766adantr 480 . . . . 5 ((𝑖 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6863, 67sumeq12dv 15615 . . . 4 (𝑖 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6961, 68eqtrid 2780 . . 3 (𝑖 = 𝑁 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
70 ssrab2 4029 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑖} ⊆ ℕ
71 dvdsdivcl 16229 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖})
7270, 71sselid 3928 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ ℕ)
73 fveq2 6828 . . . . . . . . 9 (𝑛 = (𝑖 / 𝑗) → (log‘𝑛) = (log‘(𝑖 / 𝑗)))
7473oveq1d 7367 . . . . . . . 8 (𝑛 = (𝑖 / 𝑗) → ((log‘𝑛)↑2) = ((log‘(𝑖 / 𝑗))↑2))
75 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))
76 ovex 7385 . . . . . . . 8 ((log‘𝑛)↑2) ∈ V
7774, 75, 76fvmpt3i 6940 . . . . . . 7 ((𝑖 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
7872, 77syl 17 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
7978oveq2d 7368 . . . . 5 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8079sumeq2dv 15611 . . . 4 (𝑖 ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8180mpteq2ia 5188 . . 3 (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
82 sumex 15597 . . 3 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) ∈ V
8369, 81, 82fvmpt3i 6940 . 2 (𝑁 ∈ ℕ → ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
8444, 55, 833eqtr3rd 2777 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  cr 11012   + caddc 11016   · cmul 11018   / cdiv 11781  cn 12132  2c2 12187  cexp 13970  Σcsu 15595  cdvds 16165  logclog 26491  Λcvma 27030  μcmu 27033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-gcd 16408  df-prm 16585  df-pc 16751  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-vma 27036  df-mu 27039
This theorem is referenced by:  selberg  27487
  Copyright terms: Public domain W3C validator