MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Structured version   Visualization version   GIF version

Theorem logsqvma2 27026
Description: The Möbius inverse of logsqvma 27025. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Distinct variable group:   𝑥,𝑑,𝑁

Proof of Theorem logsqvma2
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13934 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1...𝑘) ∈ Fin)
2 dvdsssfz1 16257 . . . . . . . . . 10 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ (1...𝑘))
31, 2ssfid 9263 . . . . . . . . 9 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ∈ Fin)
4 ssrab2 4076 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ ℕ
5 simpr 486 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
64, 5sselid 3979 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ ℕ)
7 vmacl 26602 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
86, 7syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘𝑑) ∈ ℝ)
9 dvdsdivcl 16255 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
104, 9sselid 3979 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ ℕ)
11 vmacl 26602 . . . . . . . . . . 11 ((𝑘 / 𝑑) ∈ ℕ → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
138, 12remulcld 11240 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
143, 13fsumrecl 15676 . . . . . . . 8 (𝑘 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
15 vmacl 26602 . . . . . . . . 9 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
16 nnrp 12981 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1716relogcld 26113 . . . . . . . . 9 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
1815, 17remulcld 11240 . . . . . . . 8 (𝑘 ∈ ℕ → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
1914, 18readdcld 11239 . . . . . . 7 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℝ)
2019recnd 11238 . . . . . 6 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2120adantl 483 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2221fmpttd 7110 . . . 4 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))):ℕ⟶ℂ)
23 ssrab2 4076 . . . . . . . . 9 {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ ℕ
24 simpr 486 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})
2523, 24sselid 3979 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ ℕ)
26 breq2 5151 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑥𝑘𝑥𝑚))
2726rabbidv 3441 . . . . . . . . . . 11 (𝑘 = 𝑚 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑚})
28 fvoveq1 7427 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑚 / 𝑑)))
2928oveq2d 7420 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
3029adantr 482 . . . . . . . . . . 11 ((𝑘 = 𝑚𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
3127, 30sumeq12dv 15648 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
32 fveq2 6888 . . . . . . . . . . 11 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
33 fveq2 6888 . . . . . . . . . . 11 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
3432, 33oveq12d 7422 . . . . . . . . . 10 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
3531, 34oveq12d 7422 . . . . . . . . 9 (𝑘 = 𝑚 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
36 eqid 2733 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))
37 ovex 7437 . . . . . . . . 9 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ V
3835, 36, 37fvmpt3i 6999 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
3925, 38syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
4039sumeq2dv 15645 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
41 logsqvma 27025 . . . . . . 7 (𝑛 ∈ ℕ → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4241adantl 483 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4340, 42eqtr2d 2774 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((log‘𝑛)↑2) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚))
4443mpteq2dva 5247 . . . 4 (𝑁 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚)))
4522, 44muinv 26677 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))))
4645fveq1d 6890 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁))
47 breq2 5151 . . . . . 6 (𝑘 = 𝑁 → (𝑥𝑘𝑥𝑁))
4847rabbidv 3441 . . . . 5 (𝑘 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
49 fvoveq1 7427 . . . . . . 7 (𝑘 = 𝑁 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑁 / 𝑑)))
5049oveq2d 7420 . . . . . 6 (𝑘 = 𝑁 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5150adantr 482 . . . . 5 ((𝑘 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5248, 51sumeq12dv 15648 . . . 4 (𝑘 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
53 fveq2 6888 . . . . 5 (𝑘 = 𝑁 → (Λ‘𝑘) = (Λ‘𝑁))
54 fveq2 6888 . . . . 5 (𝑘 = 𝑁 → (log‘𝑘) = (log‘𝑁))
5553, 54oveq12d 7422 . . . 4 (𝑘 = 𝑁 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑁) · (log‘𝑁)))
5652, 55oveq12d 7422 . . 3 (𝑘 = 𝑁 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
5756, 36, 37fvmpt3i 6999 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
58 fveq2 6888 . . . . . 6 (𝑗 = 𝑑 → (μ‘𝑗) = (μ‘𝑑))
59 oveq2 7412 . . . . . . . 8 (𝑗 = 𝑑 → (𝑖 / 𝑗) = (𝑖 / 𝑑))
6059fveq2d 6892 . . . . . . 7 (𝑗 = 𝑑 → (log‘(𝑖 / 𝑗)) = (log‘(𝑖 / 𝑑)))
6160oveq1d 7419 . . . . . 6 (𝑗 = 𝑑 → ((log‘(𝑖 / 𝑗))↑2) = ((log‘(𝑖 / 𝑑))↑2))
6258, 61oveq12d 7422 . . . . 5 (𝑗 = 𝑑 → ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)))
6362cbvsumv 15638 . . . 4 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2))
64 breq2 5151 . . . . . 6 (𝑖 = 𝑁 → (𝑥𝑖𝑥𝑁))
6564rabbidv 3441 . . . . 5 (𝑖 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑖} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
66 fvoveq1 7427 . . . . . . . 8 (𝑖 = 𝑁 → (log‘(𝑖 / 𝑑)) = (log‘(𝑁 / 𝑑)))
6766oveq1d 7419 . . . . . . 7 (𝑖 = 𝑁 → ((log‘(𝑖 / 𝑑))↑2) = ((log‘(𝑁 / 𝑑))↑2))
6867oveq2d 7420 . . . . . 6 (𝑖 = 𝑁 → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6968adantr 482 . . . . 5 ((𝑖 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7065, 69sumeq12dv 15648 . . . 4 (𝑖 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
7163, 70eqtrid 2785 . . 3 (𝑖 = 𝑁 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
72 ssrab2 4076 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑖} ⊆ ℕ
73 dvdsdivcl 16255 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖})
7472, 73sselid 3979 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ ℕ)
75 fveq2 6888 . . . . . . . . 9 (𝑛 = (𝑖 / 𝑗) → (log‘𝑛) = (log‘(𝑖 / 𝑗)))
7675oveq1d 7419 . . . . . . . 8 (𝑛 = (𝑖 / 𝑗) → ((log‘𝑛)↑2) = ((log‘(𝑖 / 𝑗))↑2))
77 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))
78 ovex 7437 . . . . . . . 8 ((log‘𝑛)↑2) ∈ V
7976, 77, 78fvmpt3i 6999 . . . . . . 7 ((𝑖 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
8074, 79syl 17 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
8180oveq2d 7420 . . . . 5 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8281sumeq2dv 15645 . . . 4 (𝑖 ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8382mpteq2ia 5250 . . 3 (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
84 sumex 15630 . . 3 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) ∈ V
8571, 83, 84fvmpt3i 6999 . 2 (𝑁 ∈ ℕ → ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
8646, 57, 853eqtr3rd 2782 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7404  cc 11104  cr 11105  1c1 11107   + caddc 11109   · cmul 11111   / cdiv 11867  cn 12208  2c2 12263  ...cfz 13480  cexp 14023  Σcsu 15628  cdvds 16193  logclog 26045  Λcvma 26576  μcmu 26579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-tx 23048  df-hmeo 23241  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-tms 23810  df-cncf 24376  df-limc 25365  df-dv 25366  df-log 26047  df-vma 26582  df-mu 26585
This theorem is referenced by:  selberg  27031
  Copyright terms: Public domain W3C validator