MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma2 Structured version   Visualization version   GIF version

Theorem logsqvma2 27511
Description: The Möbius inverse of logsqvma 27510. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Distinct variable group:   𝑥,𝑑,𝑁

Proof of Theorem logsqvma2
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsfi 16813 . . . . . . . . 9 (𝑘 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑘} ∈ Fin)
2 ssrab2 4060 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑘} ⊆ ℕ
3 simpr 484 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
42, 3sselid 3961 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → 𝑑 ∈ ℕ)
5 vmacl 27085 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘𝑑) ∈ ℝ)
7 dvdsdivcl 16340 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘})
82, 7sselid 3961 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (𝑘 / 𝑑) ∈ ℕ)
9 vmacl 27085 . . . . . . . . . . 11 ((𝑘 / 𝑑) ∈ ℕ → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
108, 9syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → (Λ‘(𝑘 / 𝑑)) ∈ ℝ)
116, 10remulcld 11270 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
121, 11fsumrecl 15755 . . . . . . . 8 (𝑘 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) ∈ ℝ)
13 vmacl 27085 . . . . . . . . 9 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
14 nnrp 13025 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514relogcld 26589 . . . . . . . . 9 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
1613, 15remulcld 11270 . . . . . . . 8 (𝑘 ∈ ℕ → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
1712, 16readdcld 11269 . . . . . . 7 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℝ)
1817recnd 11268 . . . . . 6 (𝑘 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
1918adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ ℂ)
2019fmpttd 7110 . . . 4 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))):ℕ⟶ℂ)
21 ssrab2 4060 . . . . . . . . 9 {𝑥 ∈ ℕ ∣ 𝑥𝑛} ⊆ ℕ
22 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})
2321, 22sselid 3961 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → 𝑚 ∈ ℕ)
24 breq2 5128 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑥𝑘𝑥𝑚))
2524rabbidv 3428 . . . . . . . . . . 11 (𝑘 = 𝑚 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑚})
26 fvoveq1 7433 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑚 / 𝑑)))
2726oveq2d 7426 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
2827adantr 480 . . . . . . . . . . 11 ((𝑘 = 𝑚𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
2925, 28sumeq12dv 15727 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))))
30 fveq2 6881 . . . . . . . . . . 11 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
31 fveq2 6881 . . . . . . . . . . 11 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
3230, 31oveq12d 7428 . . . . . . . . . 10 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
3329, 32oveq12d 7428 . . . . . . . . 9 (𝑘 = 𝑚 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
34 eqid 2736 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))
35 ovex 7443 . . . . . . . . 9 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) ∈ V
3633, 34, 35fvmpt3i 6996 . . . . . . . 8 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
3723, 36syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
3837sumeq2dv 15723 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))))
39 logsqvma 27510 . . . . . . 7 (𝑛 ∈ ℕ → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4039adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑚} ((Λ‘𝑑) · (Λ‘(𝑚 / 𝑑))) + ((Λ‘𝑚) · (log‘𝑚))) = ((log‘𝑛)↑2))
4138, 40eqtr2d 2772 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((log‘𝑛)↑2) = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚))
4241mpteq2dva 5219 . . . 4 (𝑁 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑚)))
4320, 42muinv 27160 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))))
4443fveq1d 6883 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁))
45 breq2 5128 . . . . . 6 (𝑘 = 𝑁 → (𝑥𝑘𝑥𝑁))
4645rabbidv 3428 . . . . 5 (𝑘 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑘} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
47 fvoveq1 7433 . . . . . . 7 (𝑘 = 𝑁 → (Λ‘(𝑘 / 𝑑)) = (Λ‘(𝑁 / 𝑑)))
4847oveq2d 7426 . . . . . 6 (𝑘 = 𝑁 → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
4948adantr 480 . . . . 5 ((𝑘 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘}) → ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
5046, 49sumeq12dv 15727 . . . 4 (𝑘 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))))
51 fveq2 6881 . . . . 5 (𝑘 = 𝑁 → (Λ‘𝑘) = (Λ‘𝑁))
52 fveq2 6881 . . . . 5 (𝑘 = 𝑁 → (log‘𝑘) = (log‘𝑁))
5351, 52oveq12d 7428 . . . 4 (𝑘 = 𝑁 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑁) · (log‘𝑁)))
5450, 53oveq12d 7428 . . 3 (𝑘 = 𝑁 → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
5554, 34, 35fvmpt3i 6996 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑘} ((Λ‘𝑑) · (Λ‘(𝑘 / 𝑑))) + ((Λ‘𝑘) · (log‘𝑘))))‘𝑁) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
56 fveq2 6881 . . . . . 6 (𝑗 = 𝑑 → (μ‘𝑗) = (μ‘𝑑))
57 oveq2 7418 . . . . . . . 8 (𝑗 = 𝑑 → (𝑖 / 𝑗) = (𝑖 / 𝑑))
5857fveq2d 6885 . . . . . . 7 (𝑗 = 𝑑 → (log‘(𝑖 / 𝑗)) = (log‘(𝑖 / 𝑑)))
5958oveq1d 7425 . . . . . 6 (𝑗 = 𝑑 → ((log‘(𝑖 / 𝑗))↑2) = ((log‘(𝑖 / 𝑑))↑2))
6056, 59oveq12d 7428 . . . . 5 (𝑗 = 𝑑 → ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)))
6160cbvsumv 15717 . . . 4 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2))
62 breq2 5128 . . . . . 6 (𝑖 = 𝑁 → (𝑥𝑖𝑥𝑁))
6362rabbidv 3428 . . . . 5 (𝑖 = 𝑁 → {𝑥 ∈ ℕ ∣ 𝑥𝑖} = {𝑥 ∈ ℕ ∣ 𝑥𝑁})
64 fvoveq1 7433 . . . . . . . 8 (𝑖 = 𝑁 → (log‘(𝑖 / 𝑑)) = (log‘(𝑁 / 𝑑)))
6564oveq1d 7425 . . . . . . 7 (𝑖 = 𝑁 → ((log‘(𝑖 / 𝑑))↑2) = ((log‘(𝑁 / 𝑑))↑2))
6665oveq2d 7426 . . . . . 6 (𝑖 = 𝑁 → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6766adantr 480 . . . . 5 ((𝑖 = 𝑁𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6863, 67sumeq12dv 15727 . . . 4 (𝑖 = 𝑁 → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑑) · ((log‘(𝑖 / 𝑑))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
6961, 68eqtrid 2783 . . 3 (𝑖 = 𝑁 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
70 ssrab2 4060 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑖} ⊆ ℕ
71 dvdsdivcl 16340 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖})
7270, 71sselid 3961 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → (𝑖 / 𝑗) ∈ ℕ)
73 fveq2 6881 . . . . . . . . 9 (𝑛 = (𝑖 / 𝑗) → (log‘𝑛) = (log‘(𝑖 / 𝑗)))
7473oveq1d 7425 . . . . . . . 8 (𝑛 = (𝑖 / 𝑗) → ((log‘𝑛)↑2) = ((log‘(𝑖 / 𝑗))↑2))
75 eqid 2736 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))
76 ovex 7443 . . . . . . . 8 ((log‘𝑛)↑2) ∈ V
7774, 75, 76fvmpt3i 6996 . . . . . . 7 ((𝑖 / 𝑗) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
7872, 77syl 17 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)) = ((log‘(𝑖 / 𝑗))↑2))
7978oveq2d 7426 . . . . 5 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖}) → ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8079sumeq2dv 15723 . . . 4 (𝑖 ∈ ℕ → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
8180mpteq2ia 5221 . . 3 (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗)))) = (𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)))
82 sumex 15709 . . 3 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((log‘(𝑖 / 𝑗))↑2)) ∈ V
8369, 81, 82fvmpt3i 6996 . 2 (𝑁 ∈ ℕ → ((𝑖 ∈ ℕ ↦ Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑖} ((μ‘𝑗) · ((𝑛 ∈ ℕ ↦ ((log‘𝑛)↑2))‘(𝑖 / 𝑗))))‘𝑁) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)))
8444, 55, 833eqtr3rd 2780 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133   + caddc 11137   · cmul 11139   / cdiv 11899  cn 12245  2c2 12300  cexp 14084  Σcsu 15707  cdvds 16277  logclog 26520  Λcvma 27059  μcmu 27062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-vma 27065  df-mu 27068
This theorem is referenced by:  selberg  27516
  Copyright terms: Public domain W3C validator