| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim | Structured version Visualization version GIF version | ||
| Description: Given a sequence of reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals, if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals (see climreeq 45775). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimclim.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimclim.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimclim.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| xlimclim.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| xlimclim | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xlim 45979 | . . . 4 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 2 | 1 | breqi 5101 | . . 3 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
| 4 | xrtgioo2 45732 | . . 3 ⊢ (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ) | |
| 5 | xlimclim.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | reex 11108 | . . . 4 ⊢ ℝ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
| 8 | letop 23141 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ Top) |
| 10 | xlimclim.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | xlimclim.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 12 | xlimclim.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 13 | 4, 5, 7, 9, 10, 11, 12 | lmss 23233 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 14 | eqid 2733 | . . 3 ⊢ (⇝𝑡‘(topGen‘ran (,))) = (⇝𝑡‘(topGen‘ran (,))) | |
| 15 | 14, 5, 11, 12 | climreeq 45775 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 16 | 3, 13, 15 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 ran crn 5622 ⟶wf 6485 ‘cfv 6489 ℝcr 11016 ≤ cle 11158 ℤcz 12479 ℤ≥cuz 12742 (,)cioo 13252 ⇝ cli 15398 topGenctg 17348 ordTopcordt 17411 Topctop 22828 ⇝𝑡clm 23161 ~~>*clsxlim 45978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ioc 13257 df-ico 13258 df-icc 13259 df-fz 13415 df-fl 13703 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-starv 17183 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-rest 17333 df-topn 17334 df-topgen 17354 df-ordt 17413 df-ps 18480 df-tsr 18481 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-lm 23164 df-xms 24255 df-ms 24256 df-xlim 45979 |
| This theorem is referenced by: climxlim 45986 xlimclim2lem 45999 |
| Copyright terms: Public domain | W3C validator |