| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim | Structured version Visualization version GIF version | ||
| Description: Given a sequence of reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals, if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals (see climreeq 45584). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimclim.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimclim.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimclim.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| xlimclim.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| xlimclim | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xlim 45790 | . . . 4 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 2 | 1 | breqi 5108 | . . 3 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
| 4 | xrtgioo2 45541 | . . 3 ⊢ (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ) | |
| 5 | xlimclim.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | reex 11135 | . . . 4 ⊢ ℝ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
| 8 | letop 23069 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ Top) |
| 10 | xlimclim.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | xlimclim.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 12 | xlimclim.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 13 | 4, 5, 7, 9, 10, 11, 12 | lmss 23161 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 14 | eqid 2729 | . . 3 ⊢ (⇝𝑡‘(topGen‘ran (,))) = (⇝𝑡‘(topGen‘ran (,))) | |
| 15 | 14, 5, 11, 12 | climreeq 45584 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 16 | 3, 13, 15 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ran crn 5632 ⟶wf 6495 ‘cfv 6499 ℝcr 11043 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 (,)cioo 13282 ⇝ cli 15426 topGenctg 17376 ordTopcordt 17438 Topctop 22756 ⇝𝑡clm 23089 ~~>*clsxlim 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fl 13730 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17361 df-topn 17362 df-topgen 17382 df-ordt 17440 df-ps 18501 df-tsr 18502 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-lm 23092 df-xms 24184 df-ms 24185 df-xlim 45790 |
| This theorem is referenced by: climxlim 45797 xlimclim2lem 45810 |
| Copyright terms: Public domain | W3C validator |