| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim | Structured version Visualization version GIF version | ||
| Description: Given a sequence of reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals, if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals (see climreeq 45584). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimclim.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimclim.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimclim.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| xlimclim.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| xlimclim | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xlim 45790 | . . . 4 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 2 | 1 | breqi 5121 | . . 3 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)) |
| 4 | xrtgioo2 45541 | . . 3 ⊢ (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ) | |
| 5 | xlimclim.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | reex 11177 | . . . 4 ⊢ ℝ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
| 8 | letop 23099 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (ordTop‘ ≤ ) ∈ Top) |
| 10 | xlimclim.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | xlimclim.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 12 | xlimclim.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 13 | 4, 5, 7, 9, 10, 11, 12 | lmss 23191 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 14 | eqid 2730 | . . 3 ⊢ (⇝𝑡‘(topGen‘ran (,))) = (⇝𝑡‘(topGen‘ran (,))) | |
| 15 | 14, 5, 11, 12 | climreeq 45584 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 16 | 3, 13, 15 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 ran crn 5647 ⟶wf 6515 ‘cfv 6519 ℝcr 11085 ≤ cle 11227 ℤcz 12545 ℤ≥cuz 12809 (,)cioo 13319 ⇝ cli 15457 topGenctg 17406 ordTopcordt 17468 Topctop 22786 ⇝𝑡clm 23119 ~~>*clsxlim 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fi 9380 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fl 13766 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-rlim 15462 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-rest 17391 df-topn 17392 df-topgen 17412 df-ordt 17470 df-ps 18531 df-tsr 18532 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-lm 23122 df-xms 24214 df-ms 24215 df-xlim 45790 |
| This theorem is referenced by: climxlim 45797 xlimclim2lem 45810 |
| Copyright terms: Public domain | W3C validator |