MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climaddc1 Structured version   Visualization version   GIF version

Theorem climaddc1 15161
Description: Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climaddc1.5 (𝜑𝐶 ∈ ℂ)
climaddc1.6 (𝜑𝐺𝑊)
climaddc1.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climaddc1.h ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + 𝐶))
Assertion
Ref Expression
climaddc1 (𝜑𝐺 ⇝ (𝐴 + 𝐶))
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climaddc1
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . 2 (𝜑𝐹𝐴)
4 climaddc1.6 . 2 (𝜑𝐺𝑊)
5 climaddc1.5 . . 3 (𝜑𝐶 ∈ ℂ)
6 0z 12152 . . 3 0 ∈ ℤ
7 uzssz 12424 . . . 4 (ℤ‘0) ⊆ ℤ
8 zex 12150 . . . 4 ℤ ∈ V
97, 8climconst2 15074 . . 3 ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶)
105, 6, 9sylancl 589 . 2 (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶)
11 climaddc1.7 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eluzelz 12413 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1312, 1eleq2s 2849 . . . 4 (𝑘𝑍𝑘 ∈ ℤ)
14 fvconst2g 6995 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
155, 13, 14syl2an 599 . . 3 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
165adantr 484 . . 3 ((𝜑𝑘𝑍) → 𝐶 ∈ ℂ)
1715, 16eqeltrd 2831 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ)
18 climaddc1.h . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + 𝐶))
1915oveq2d 7207 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) + ((ℤ × {𝐶})‘𝑘)) = ((𝐹𝑘) + 𝐶))
2018, 19eqtr4d 2774 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + ((ℤ × {𝐶})‘𝑘)))
211, 2, 3, 4, 10, 11, 17, 20climadd 15158 1 (𝜑𝐺 ⇝ (𝐴 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {csn 4527   class class class wbr 5039   × cxp 5534  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694   + caddc 10697  cz 12141  cuz 12403  cli 15010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014
This theorem is referenced by:  climaddc2  15162  clim2ser2  15184  lgamcvg2  25891
  Copyright terms: Public domain W3C validator