Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climaddc1 | Structured version Visualization version GIF version |
Description: Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climaddc1.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) |
Ref | Expression |
---|---|
climaddc1 | ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climadd.4 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climaddc1.6 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
5 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | 0z 12328 | . . 3 ⊢ 0 ∈ ℤ | |
7 | uzssz 12601 | . . . 4 ⊢ (ℤ≥‘0) ⊆ ℤ | |
8 | zex 12326 | . . . 4 ⊢ ℤ ∈ V | |
9 | 7, 8 | climconst2 15255 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶) |
10 | 5, 6, 9 | sylancl 586 | . 2 ⊢ (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶) |
11 | climaddc1.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
12 | eluzelz 12590 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
13 | 12, 1 | eleq2s 2857 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
14 | fvconst2g 7079 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶) | |
15 | 5, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶) |
16 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) |
17 | 15, 16 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ) |
18 | climaddc1.h | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) | |
19 | 15 | oveq2d 7293 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + ((ℤ × {𝐶})‘𝑘)) = ((𝐹‘𝑘) + 𝐶)) |
20 | 18, 19 | eqtr4d 2781 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + ((ℤ × {𝐶})‘𝑘))) |
21 | 1, 2, 3, 4, 10, 11, 17, 20 | climadd 15339 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4563 class class class wbr 5076 × cxp 5589 ‘cfv 6435 (class class class)co 7277 ℂcc 10867 0cc0 10869 + caddc 10872 ℤcz 12317 ℤ≥cuz 12580 ⇝ cli 15191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-pre-sup 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-sup 9199 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-n0 12232 df-z 12318 df-uz 12581 df-rp 12729 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 |
This theorem is referenced by: climaddc2 15343 clim2ser2 15365 lgamcvg2 26202 |
Copyright terms: Public domain | W3C validator |