MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climlec2 Structured version   Visualization version   GIF version

Theorem climlec2 15298
Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climlec2.2 (𝜑𝑀 ∈ ℤ)
climlec2.3 (𝜑𝐴 ∈ ℝ)
climlec2.4 (𝜑𝐹𝐵)
climlec2.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climlec2.6 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))
Assertion
Ref Expression
climlec2 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climlec2
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 climlec2.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climlec2.3 . . . 4 (𝜑𝐴 ∈ ℝ)
43recnd 10934 . . 3 (𝜑𝐴 ∈ ℂ)
5 0z 12260 . . 3 0 ∈ ℤ
6 uzssz 12532 . . . 4 (ℤ‘0) ⊆ ℤ
7 zex 12258 . . . 4 ℤ ∈ V
86, 7climconst2 15185 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐴}) ⇝ 𝐴)
94, 5, 8sylancl 585 . 2 (𝜑 → (ℤ × {𝐴}) ⇝ 𝐴)
10 climlec2.4 . 2 (𝜑𝐹𝐵)
11 eluzelz 12521 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1211, 1eleq2s 2857 . . . 4 (𝑘𝑍𝑘 ∈ ℤ)
13 fvconst2g 7059 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐴})‘𝑘) = 𝐴)
143, 12, 13syl2an 595 . . 3 ((𝜑𝑘𝑍) → ((ℤ × {𝐴})‘𝑘) = 𝐴)
153adantr 480 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
1614, 15eqeltrd 2839 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐴})‘𝑘) ∈ ℝ)
17 climlec2.5 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
18 climlec2.6 . . 3 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))
1914, 18eqbrtrd 5092 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐴})‘𝑘) ≤ (𝐹𝑘))
201, 2, 9, 10, 16, 17, 19climle 15277 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558   class class class wbr 5070   × cxp 5578  cfv 6418  cc 10800  cr 10801  0cc0 10802  cle 10941  cz 12249  cuz 12511  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126
This theorem is referenced by:  climub  15301  climlec3  33605  dvgrat  41819
  Copyright terms: Public domain W3C validator