Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubst Structured version   Visualization version   GIF version

Theorem mzpsubst 42704
Description: Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpsubst ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊,𝑦   𝑥,𝐹   𝑥,𝑉,𝑦   𝑥,𝐺
Allowed substitution hints:   𝐹(𝑦)   𝐺(𝑦)

Proof of Theorem mzpsubst
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑊 ∈ V)
2 elfvex 6958 . . 3 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
323ad2ant2 1134 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑉 ∈ V)
4 simp3 1138 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
5 simp2 1137 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝐹 ∈ (mzPoly‘𝑉))
6 simpr 484 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
7 simpll3 1214 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
8 simpll2 1213 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
9 mzpf 42692 . . . . . . . . . . . . . 14 (𝐺 ∈ (mzPoly‘𝑊) → 𝐺:(ℤ ↑m 𝑊)⟶ℤ)
109ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐺𝑥) ∈ ℤ)
1110expcom 413 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ ↑m 𝑊) → (𝐺 ∈ (mzPoly‘𝑊) → (𝐺𝑥) ∈ ℤ))
1211ralimdv 3175 . . . . . . . . . . 11 (𝑥 ∈ (ℤ ↑m 𝑊) → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ))
1312imp 406 . . . . . . . . . 10 ((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
14 eqid 2740 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑦𝑉 ↦ (𝐺𝑥))
1514fmpt 7144 . . . . . . . . . 10 (∀𝑦𝑉 (𝐺𝑥) ∈ ℤ ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1613, 15sylib 218 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1716adantr 480 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
18 zex 12648 . . . . . . . . 9 ℤ ∈ V
19 simpr 484 . . . . . . . . 9 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → 𝑉 ∈ V)
20 elmapg 8897 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2118, 19, 20sylancr 586 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2217, 21mpbird 257 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
236, 7, 8, 22syl21anc 837 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
24 vex 3492 . . . . . . 7 𝑏 ∈ V
2524fvconst2 7241 . . . . . 6 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) → (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2623, 25syl 17 . . . . 5 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2726mpteq2dva 5266 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏))
28 mzpconstmpt 42696 . . . . 5 ((𝑊 ∈ V ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
29283ad2antl1 1185 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
3027, 29eqeltrd 2844 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
31 simpr 484 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
32 simpll3 1214 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
33 simpll2 1213 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
3431, 32, 33, 22syl21anc 837 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
35 fveq1 6919 . . . . . . . . 9 (𝑐 = (𝑦𝑉 ↦ (𝐺𝑥)) → (𝑐𝑏) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
36 eqid 2740 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))
37 fvex 6933 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) ∈ V
3835, 36, 37fvmpt 7029 . . . . . . . 8 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
3934, 38syl 17 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
40 simplr 768 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑏𝑉)
41 fvex 6933 . . . . . . . 8 (𝑏 / 𝑦𝐺𝑥) ∈ V
42 csbeq1 3924 . . . . . . . . . 10 (𝑎 = 𝑏𝑎 / 𝑦𝐺 = 𝑏 / 𝑦𝐺)
4342fveq1d 6922 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 / 𝑦𝐺𝑥) = (𝑏 / 𝑦𝐺𝑥))
44 nfcv 2908 . . . . . . . . . 10 𝑎(𝐺𝑥)
45 nfcsb1v 3946 . . . . . . . . . . 11 𝑦𝑎 / 𝑦𝐺
46 nfcv 2908 . . . . . . . . . . 11 𝑦𝑥
4745, 46nffv 6930 . . . . . . . . . 10 𝑦(𝑎 / 𝑦𝐺𝑥)
48 csbeq1a 3935 . . . . . . . . . . 11 (𝑦 = 𝑎𝐺 = 𝑎 / 𝑦𝐺)
4948fveq1d 6922 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑥) = (𝑎 / 𝑦𝐺𝑥))
5044, 47, 49cbvmpt 5277 . . . . . . . . 9 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑎𝑉 ↦ (𝑎 / 𝑦𝐺𝑥))
5143, 50fvmptg 7027 . . . . . . . 8 ((𝑏𝑉 ∧ (𝑏 / 𝑦𝐺𝑥) ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5240, 41, 51sylancl 585 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5339, 52eqtrd 2780 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏 / 𝑦𝐺𝑥))
5453mpteq2dva 5266 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
55 simpr 484 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏𝑉)
56 simpl3 1193 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
57 nfcsb1v 3946 . . . . . . . . . 10 𝑦𝑏 / 𝑦𝐺
5857nfel1 2925 . . . . . . . . 9 𝑦𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)
59 csbeq1a 3935 . . . . . . . . . 10 (𝑦 = 𝑏𝐺 = 𝑏 / 𝑦𝐺)
6059eleq1d 2829 . . . . . . . . 9 (𝑦 = 𝑏 → (𝐺 ∈ (mzPoly‘𝑊) ↔ 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6158, 60rspc 3623 . . . . . . . 8 (𝑏𝑉 → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6255, 56, 61sylc 65 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊))
63 mzpf 42692 . . . . . . 7 (𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺:(ℤ ↑m 𝑊)⟶ℤ)
6462, 63syl 17 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺:(ℤ ↑m 𝑊)⟶ℤ)
6564feqmptd 6990 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
6654, 65eqtr4d 2783 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = 𝑏 / 𝑦𝐺)
6766, 62eqeltrd 2844 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
68 simp2l 1199 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏:(ℤ ↑m 𝑉)⟶ℤ)
6968ffnd 6748 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏 Fn (ℤ ↑m 𝑉))
70 simp3l 1201 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐:(ℤ ↑m 𝑉)⟶ℤ)
7170ffnd 6748 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐 Fn (ℤ ↑m 𝑉))
72 simp13 1205 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
73 simp12 1204 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑉 ∈ V)
74 simplll 774 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑏 Fn (ℤ ↑m 𝑉))
75 simpllr 775 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑐 Fn (ℤ ↑m 𝑉))
76 ovexd 7483 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (ℤ ↑m 𝑉) ∈ V)
77 simpr 484 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
78 simplrl 776 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
7977, 78, 12sylc 65 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
8079, 15sylib 218 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
81 simplrr 777 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
8218, 81, 20sylancr 586 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
8380, 82mpbird 257 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
84 fnfvof 7731 . . . . . . 7 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))) → ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8574, 75, 76, 83, 84syl22anc 838 . . . . . 6 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8685mpteq2dva 5266 . . . . 5 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
8769, 71, 72, 73, 86syl22anc 838 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
88 simp2r 1200 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
89 simp3r 1202 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
90 mzpaddmpt 42697 . . . . 5 (((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9188, 89, 90syl2anc 583 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9287, 91eqeltrd 2844 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
93 fnfvof 7731 . . . . . . 7 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))) → ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9474, 75, 76, 83, 93syl22anc 838 . . . . . 6 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9594mpteq2dva 5266 . . . . 5 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
9669, 71, 72, 73, 95syl22anc 838 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
97 mzpmulmpt 42698 . . . . 5 (((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9888, 89, 97syl2anc 583 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9996, 98eqeltrd 2844 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
100 fveq1 6919 . . . . 5 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))))
101100mpteq2dv 5268 . . . 4 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))))
102101eleq1d 2829 . . 3 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
103 fveq1 6919 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))))
104103mpteq2dv 5268 . . . 4 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))))
105104eleq1d 2829 . . 3 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
106 fveq1 6919 . . . . 5 (𝑎 = 𝑏 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))))
107106mpteq2dv 5268 . . . 4 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))))
108107eleq1d 2829 . . 3 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
109 fveq1 6919 . . . . 5 (𝑎 = 𝑐 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))
110109mpteq2dv 5268 . . . 4 (𝑎 = 𝑐 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
111110eleq1d 2829 . . 3 (𝑎 = 𝑐 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
112 fveq1 6919 . . . . 5 (𝑎 = (𝑏f + 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
113112mpteq2dv 5268 . . . 4 (𝑎 = (𝑏f + 𝑐) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
114113eleq1d 2829 . . 3 (𝑎 = (𝑏f + 𝑐) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
115 fveq1 6919 . . . . 5 (𝑎 = (𝑏f · 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
116115mpteq2dv 5268 . . . 4 (𝑎 = (𝑏f · 𝑐) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
117116eleq1d 2829 . . 3 (𝑎 = (𝑏f · 𝑐) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
118 fveq1 6919 . . . . 5 (𝑎 = 𝐹 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥))))
119118mpteq2dv 5268 . . . 4 (𝑎 = 𝐹 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))))
120119eleq1d 2829 . . 3 (𝑎 = 𝐹 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
12130, 67, 92, 99, 102, 105, 108, 111, 114, 117, 120mzpindd 42702 . 2 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
1221, 3, 4, 5, 121syl31anc 1373 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921  {csn 4648  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884   + caddc 11187   · cmul 11189  cz 12639  mzPolycmzp 42678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-mzpcl 42679  df-mzp 42680
This theorem is referenced by:  mzprename  42705
  Copyright terms: Public domain W3C validator