Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubst Structured version   Visualization version   GIF version

Theorem mzpsubst 39605
 Description: Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpsubst ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊,𝑦   𝑥,𝐹   𝑥,𝑉,𝑦   𝑥,𝐺
Allowed substitution hints:   𝐹(𝑦)   𝐺(𝑦)

Proof of Theorem mzpsubst
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑊 ∈ V)
2 elfvex 6694 . . 3 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
323ad2ant2 1131 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑉 ∈ V)
4 simp3 1135 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
5 simp2 1134 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝐹 ∈ (mzPoly‘𝑉))
6 simpr 488 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
7 simpll3 1211 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
8 simpll2 1210 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
9 mzpf 39593 . . . . . . . . . . . . . 14 (𝐺 ∈ (mzPoly‘𝑊) → 𝐺:(ℤ ↑m 𝑊)⟶ℤ)
109ffvelrnda 6842 . . . . . . . . . . . . 13 ((𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐺𝑥) ∈ ℤ)
1110expcom 417 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ ↑m 𝑊) → (𝐺 ∈ (mzPoly‘𝑊) → (𝐺𝑥) ∈ ℤ))
1211ralimdv 3173 . . . . . . . . . . 11 (𝑥 ∈ (ℤ ↑m 𝑊) → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ))
1312imp 410 . . . . . . . . . 10 ((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
14 eqid 2824 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑦𝑉 ↦ (𝐺𝑥))
1514fmpt 6865 . . . . . . . . . 10 (∀𝑦𝑉 (𝐺𝑥) ∈ ℤ ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1613, 15sylib 221 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1716adantr 484 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
18 zex 11987 . . . . . . . . 9 ℤ ∈ V
19 simpr 488 . . . . . . . . 9 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → 𝑉 ∈ V)
20 elmapg 8415 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2118, 19, 20sylancr 590 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2217, 21mpbird 260 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
236, 7, 8, 22syl21anc 836 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
24 vex 3483 . . . . . . 7 𝑏 ∈ V
2524fvconst2 6957 . . . . . 6 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) → (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2623, 25syl 17 . . . . 5 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2726mpteq2dva 5147 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏))
28 mzpconstmpt 39597 . . . . 5 ((𝑊 ∈ V ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
29283ad2antl1 1182 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
3027, 29eqeltrd 2916 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
31 simpr 488 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
32 simpll3 1211 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
33 simpll2 1210 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
3431, 32, 33, 22syl21anc 836 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
35 fveq1 6660 . . . . . . . . 9 (𝑐 = (𝑦𝑉 ↦ (𝐺𝑥)) → (𝑐𝑏) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
36 eqid 2824 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))
37 fvex 6674 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) ∈ V
3835, 36, 37fvmpt 6759 . . . . . . . 8 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
3934, 38syl 17 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
40 simplr 768 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑏𝑉)
41 fvex 6674 . . . . . . . 8 (𝑏 / 𝑦𝐺𝑥) ∈ V
42 csbeq1 3869 . . . . . . . . . 10 (𝑎 = 𝑏𝑎 / 𝑦𝐺 = 𝑏 / 𝑦𝐺)
4342fveq1d 6663 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 / 𝑦𝐺𝑥) = (𝑏 / 𝑦𝐺𝑥))
44 nfcv 2982 . . . . . . . . . 10 𝑎(𝐺𝑥)
45 nfcsb1v 3890 . . . . . . . . . . 11 𝑦𝑎 / 𝑦𝐺
46 nfcv 2982 . . . . . . . . . . 11 𝑦𝑥
4745, 46nffv 6671 . . . . . . . . . 10 𝑦(𝑎 / 𝑦𝐺𝑥)
48 csbeq1a 3880 . . . . . . . . . . 11 (𝑦 = 𝑎𝐺 = 𝑎 / 𝑦𝐺)
4948fveq1d 6663 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑥) = (𝑎 / 𝑦𝐺𝑥))
5044, 47, 49cbvmpt 5153 . . . . . . . . 9 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑎𝑉 ↦ (𝑎 / 𝑦𝐺𝑥))
5143, 50fvmptg 6757 . . . . . . . 8 ((𝑏𝑉 ∧ (𝑏 / 𝑦𝐺𝑥) ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5240, 41, 51sylancl 589 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5339, 52eqtrd 2859 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏 / 𝑦𝐺𝑥))
5453mpteq2dva 5147 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
55 simpr 488 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏𝑉)
56 simpl3 1190 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
57 nfcsb1v 3890 . . . . . . . . . 10 𝑦𝑏 / 𝑦𝐺
5857nfel1 2998 . . . . . . . . 9 𝑦𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)
59 csbeq1a 3880 . . . . . . . . . 10 (𝑦 = 𝑏𝐺 = 𝑏 / 𝑦𝐺)
6059eleq1d 2900 . . . . . . . . 9 (𝑦 = 𝑏 → (𝐺 ∈ (mzPoly‘𝑊) ↔ 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6158, 60rspc 3597 . . . . . . . 8 (𝑏𝑉 → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6255, 56, 61sylc 65 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊))
63 mzpf 39593 . . . . . . 7 (𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺:(ℤ ↑m 𝑊)⟶ℤ)
6462, 63syl 17 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺:(ℤ ↑m 𝑊)⟶ℤ)
6564feqmptd 6724 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
6654, 65eqtr4d 2862 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = 𝑏 / 𝑦𝐺)
6766, 62eqeltrd 2916 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
68 simp2l 1196 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏:(ℤ ↑m 𝑉)⟶ℤ)
6968ffnd 6504 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏 Fn (ℤ ↑m 𝑉))
70 simp3l 1198 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐:(ℤ ↑m 𝑉)⟶ℤ)
7170ffnd 6504 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐 Fn (ℤ ↑m 𝑉))
72 simp13 1202 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
73 simp12 1201 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑉 ∈ V)
74 simplll 774 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑏 Fn (ℤ ↑m 𝑉))
75 simpllr 775 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑐 Fn (ℤ ↑m 𝑉))
76 ovexd 7184 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (ℤ ↑m 𝑉) ∈ V)
77 simpr 488 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
78 simplrl 776 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
7977, 78, 12sylc 65 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
8079, 15sylib 221 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
81 simplrr 777 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
8218, 81, 20sylancr 590 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
8380, 82mpbird 260 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
84 fnfvof 7417 . . . . . . 7 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))) → ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8574, 75, 76, 83, 84syl22anc 837 . . . . . 6 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8685mpteq2dva 5147 . . . . 5 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
8769, 71, 72, 73, 86syl22anc 837 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
88 simp2r 1197 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
89 simp3r 1199 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
90 mzpaddmpt 39598 . . . . 5 (((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9188, 89, 90syl2anc 587 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9287, 91eqeltrd 2916 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
93 fnfvof 7417 . . . . . . 7 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))) → ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9474, 75, 76, 83, 93syl22anc 837 . . . . . 6 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9594mpteq2dva 5147 . . . . 5 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
9669, 71, 72, 73, 95syl22anc 837 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
97 mzpmulmpt 39599 . . . . 5 (((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9888, 89, 97syl2anc 587 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9996, 98eqeltrd 2916 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
100 fveq1 6660 . . . . 5 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))))
101100mpteq2dv 5148 . . . 4 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))))
102101eleq1d 2900 . . 3 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
103 fveq1 6660 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))))
104103mpteq2dv 5148 . . . 4 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))))
105104eleq1d 2900 . . 3 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
106 fveq1 6660 . . . . 5 (𝑎 = 𝑏 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))))
107106mpteq2dv 5148 . . . 4 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))))
108107eleq1d 2900 . . 3 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
109 fveq1 6660 . . . . 5 (𝑎 = 𝑐 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))
110109mpteq2dv 5148 . . . 4 (𝑎 = 𝑐 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
111110eleq1d 2900 . . 3 (𝑎 = 𝑐 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
112 fveq1 6660 . . . . 5 (𝑎 = (𝑏f + 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
113112mpteq2dv 5148 . . . 4 (𝑎 = (𝑏f + 𝑐) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
114113eleq1d 2900 . . 3 (𝑎 = (𝑏f + 𝑐) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
115 fveq1 6660 . . . . 5 (𝑎 = (𝑏f · 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
116115mpteq2dv 5148 . . . 4 (𝑎 = (𝑏f · 𝑐) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
117116eleq1d 2900 . . 3 (𝑎 = (𝑏f · 𝑐) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
118 fveq1 6660 . . . . 5 (𝑎 = 𝐹 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥))))
119118mpteq2dv 5148 . . . 4 (𝑎 = 𝐹 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))))
120119eleq1d 2900 . . 3 (𝑎 = 𝐹 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
12130, 67, 92, 99, 102, 105, 108, 111, 114, 117, 120mzpindd 39603 . 2 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
1221, 3, 4, 5, 121syl31anc 1370 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  Vcvv 3480  ⦋csb 3866  {csn 4550   ↦ cmpt 5132   × cxp 5540   Fn wfn 6338  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149   ∘f cof 7401   ↑m cmap 8402   + caddc 10538   · cmul 10540  ℤcz 11978  mzPolycmzp 39579 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-mzpcl 39580  df-mzp 39581 This theorem is referenced by:  mzprename  39606
 Copyright terms: Public domain W3C validator