Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climsubc2 | Structured version Visualization version GIF version |
Description: Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climsubc2.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) |
Ref | Expression |
---|---|
climsubc2 | ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 0z 12403 | . . 3 ⊢ 0 ∈ ℤ | |
5 | uzssz 12676 | . . . 4 ⊢ (ℤ≥‘0) ⊆ ℤ | |
6 | zex 12401 | . . . 4 ⊢ ℤ ∈ V | |
7 | 5, 6 | climconst2 15329 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶) |
8 | 3, 4, 7 | sylancl 586 | . 2 ⊢ (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶) |
9 | climaddc1.6 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
10 | climadd.4 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
11 | eluzelz 12665 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
12 | 11, 1 | eleq2s 2856 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
13 | fvconst2g 7116 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶) | |
14 | 3, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶) |
15 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) |
16 | 14, 15 | eqeltrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ) |
17 | climaddc1.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
18 | climsubc2.h | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) | |
19 | 14 | oveq1d 7330 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ × {𝐶})‘𝑘) − (𝐹‘𝑘)) = (𝐶 − (𝐹‘𝑘))) |
20 | 18, 19 | eqtr4d 2780 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (((ℤ × {𝐶})‘𝑘) − (𝐹‘𝑘))) |
21 | 1, 2, 8, 9, 10, 16, 17, 20 | climsub 15415 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {csn 4571 class class class wbr 5087 × cxp 5605 ‘cfv 6465 (class class class)co 7315 ℂcc 10942 0cc0 10944 − cmin 11278 ℤcz 12392 ℤ≥cuz 12655 ⇝ cli 15265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 |
This theorem is referenced by: trireciplem 15646 geolim 15654 geo2lim 15659 mbfi1fseqlem6 24957 leibpi 26164 emcllem7 26223 lgamcvg2 26276 dchrisumlem3 26711 climlec3 33800 stirlinglem1 43852 |
Copyright terms: Public domain | W3C validator |