![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climsubc2 | Structured version Visualization version GIF version |
Description: Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climsubc2.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) |
Ref | Expression |
---|---|
climsubc2 | ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 0z 12597 | . . 3 ⊢ 0 ∈ ℤ | |
5 | uzssz 12871 | . . . 4 ⊢ (ℤ≥‘0) ⊆ ℤ | |
6 | zex 12595 | . . . 4 ⊢ ℤ ∈ V | |
7 | 5, 6 | climconst2 15522 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶) |
8 | 3, 4, 7 | sylancl 584 | . 2 ⊢ (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶) |
9 | climaddc1.6 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
10 | climadd.4 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
11 | eluzelz 12860 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
12 | 11, 1 | eleq2s 2843 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
13 | fvconst2g 7208 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶) | |
14 | 3, 12, 13 | syl2an 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶) |
15 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) |
16 | 14, 15 | eqeltrd 2825 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ) |
17 | climaddc1.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
18 | climsubc2.h | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) | |
19 | 14 | oveq1d 7429 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ × {𝐶})‘𝑘) − (𝐹‘𝑘)) = (𝐶 − (𝐹‘𝑘))) |
20 | 18, 19 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (((ℤ × {𝐶})‘𝑘) − (𝐹‘𝑘))) |
21 | 1, 2, 8, 9, 10, 16, 17, 20 | climsub 15608 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4622 class class class wbr 5141 × cxp 5668 ‘cfv 6541 (class class class)co 7414 ℂcc 11134 0cc0 11136 − cmin 11472 ℤcz 12586 ℤ≥cuz 12850 ⇝ cli 15458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 |
This theorem is referenced by: trireciplem 15838 geolim 15846 geo2lim 15851 mbfi1fseqlem6 25666 leibpi 26890 emcllem7 26950 lgamcvg2 27003 dchrisumlem3 27440 climlec3 35357 stirlinglem1 45497 |
Copyright terms: Public domain | W3C validator |