MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsubc1 Structured version   Visualization version   GIF version

Theorem climsubc1 15654
Description: Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climaddc1.5 (𝜑𝐶 ∈ ℂ)
climaddc1.6 (𝜑𝐺𝑊)
climaddc1.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsubc1.h ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))
Assertion
Ref Expression
climsubc1 (𝜑𝐺 ⇝ (𝐴𝐶))
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsubc1
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . 2 (𝜑𝐹𝐴)
4 climaddc1.6 . 2 (𝜑𝐺𝑊)
5 climaddc1.5 . . 3 (𝜑𝐶 ∈ ℂ)
6 0z 12599 . . 3 0 ∈ ℤ
7 uzssz 12873 . . . 4 (ℤ‘0) ⊆ ℤ
8 zex 12597 . . . 4 ℤ ∈ V
97, 8climconst2 15564 . . 3 ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶)
105, 6, 9sylancl 586 . 2 (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶)
11 climaddc1.7 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eluzelz 12862 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1312, 1eleq2s 2852 . . . 4 (𝑘𝑍𝑘 ∈ ℤ)
14 fvconst2g 7194 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
155, 13, 14syl2an 596 . . 3 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
165adantr 480 . . 3 ((𝜑𝑘𝑍) → 𝐶 ∈ ℂ)
1715, 16eqeltrd 2834 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ)
18 climsubc1.h . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))
1915oveq2d 7421 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) − ((ℤ × {𝐶})‘𝑘)) = ((𝐹𝑘) − 𝐶))
2018, 19eqtr4d 2773 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − ((ℤ × {𝐶})‘𝑘)))
211, 2, 3, 4, 10, 11, 17, 20climsub 15650 1 (𝜑𝐺 ⇝ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601   class class class wbr 5119   × cxp 5652  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  cmin 11466  cz 12588  cuz 12852  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504
This theorem is referenced by:  clim2ser  15671  ulmdvlem1  26361  fourierdlem112  46247
  Copyright terms: Public domain W3C validator