MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsubc1 Structured version   Visualization version   GIF version

Theorem climsubc1 14974
Description: Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climaddc1.5 (𝜑𝐶 ∈ ℂ)
climaddc1.6 (𝜑𝐺𝑊)
climaddc1.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsubc1.h ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))
Assertion
Ref Expression
climsubc1 (𝜑𝐺 ⇝ (𝐴𝐶))
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsubc1
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . 2 (𝜑𝐹𝐴)
4 climaddc1.6 . 2 (𝜑𝐺𝑊)
5 climaddc1.5 . . 3 (𝜑𝐶 ∈ ℂ)
6 0z 11971 . . 3 0 ∈ ℤ
7 uzssz 12243 . . . 4 (ℤ‘0) ⊆ ℤ
8 zex 11969 . . . 4 ℤ ∈ V
97, 8climconst2 14885 . . 3 ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶)
105, 6, 9sylancl 588 . 2 (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶)
11 climaddc1.7 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eluzelz 12232 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1312, 1eleq2s 2929 . . . 4 (𝑘𝑍𝑘 ∈ ℤ)
14 fvconst2g 6940 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
155, 13, 14syl2an 597 . . 3 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
165adantr 483 . . 3 ((𝜑𝑘𝑍) → 𝐶 ∈ ℂ)
1715, 16eqeltrd 2911 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ)
18 climsubc1.h . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))
1915oveq2d 7149 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) − ((ℤ × {𝐶})‘𝑘)) = ((𝐹𝑘) − 𝐶))
2018, 19eqtr4d 2858 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − ((ℤ × {𝐶})‘𝑘)))
211, 2, 3, 4, 10, 11, 17, 20climsub 14970 1 (𝜑𝐺 ⇝ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {csn 4543   class class class wbr 5042   × cxp 5529  cfv 6331  (class class class)co 7133  cc 10513  0cc0 10515  cmin 10848  cz 11960  cuz 12222  cli 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825
This theorem is referenced by:  clim2ser  14991  ulmdvlem1  24974  fourierdlem112  42651
  Copyright terms: Public domain W3C validator