MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem1 Structured version   Visualization version   GIF version

Theorem iseraltlem1 15648
Description: Lemma for iseralt 15651. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
Assertion
Ref Expression
iseraltlem1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (ℤ𝑁) = (ℤ𝑁)
2 eluzelz 12803 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 iseralt.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleq2s 2846 . . 3 (𝑁𝑍𝑁 ∈ ℤ)
54adantl 481 . 2 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
6 iseralt.5 . . 3 (𝜑𝐺 ⇝ 0)
76adantr 480 . 2 ((𝜑𝑁𝑍) → 𝐺 ⇝ 0)
8 iseralt.3 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
98ffvelcdmda 7056 . . . 4 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℝ)
109recnd 11202 . . 3 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℂ)
11 1z 12563 . . 3 1 ∈ ℤ
12 uzssz 12814 . . . 4 (ℤ‘1) ⊆ ℤ
13 zex 12538 . . . 4 ℤ ∈ V
1412, 13climconst2 15514 . . 3 (((𝐺𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
1510, 11, 14sylancl 586 . 2 ((𝜑𝑁𝑍) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
168ad2antrr 726 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐺:𝑍⟶ℝ)
173uztrn2 12812 . . . 4 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1817adantll 714 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1916, 18ffvelcdmd 7057 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ∈ ℝ)
20 eluzelz 12803 . . . . 5 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
2120adantl 481 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
22 fvex 6871 . . . . 5 (𝐺𝑁) ∈ V
2322fvconst2 7178 . . . 4 (𝑛 ∈ ℤ → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
2421, 23syl 17 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
259adantr 480 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑁) ∈ ℝ)
2624, 25eqeltrd 2828 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) ∈ ℝ)
27 simpr 484 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
2816adantr 480 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ)
29 simplr 768 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑁𝑍)
30 elfzuz 13481 . . . . . 6 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
313uztrn2 12812 . . . . . 6 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
3229, 30, 31syl2an 596 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
3328, 32ffvelcdmd 7057 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺𝑘) ∈ ℝ)
34 simpl 482 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝜑𝑁𝑍))
35 elfzuz 13481 . . . . 5 (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑁))
3631adantll 714 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
37 iseralt.4 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3837adantlr 715 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3936, 38syldan 591 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4034, 35, 39syl2an 596 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4127, 33, 40monoord2 13998 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ (𝐺𝑁))
4241, 24breqtrrd 5135 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ ((ℤ × {(𝐺𝑁)})‘𝑛))
431, 5, 7, 15, 19, 26, 42climle 15606 1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cle 11209  cmin 11405  cz 12529  cuz 12793  ...cfz 13468  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455
This theorem is referenced by:  iseraltlem3  15650  iseralt  15651
  Copyright terms: Public domain W3C validator