MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem1 Structured version   Visualization version   GIF version

Theorem iseraltlem1 15607
Description: Lemma for iseralt 15610. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
Assertion
Ref Expression
iseraltlem1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (ℤ𝑁) = (ℤ𝑁)
2 eluzelz 12763 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 iseralt.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleq2s 2846 . . 3 (𝑁𝑍𝑁 ∈ ℤ)
54adantl 481 . 2 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
6 iseralt.5 . . 3 (𝜑𝐺 ⇝ 0)
76adantr 480 . 2 ((𝜑𝑁𝑍) → 𝐺 ⇝ 0)
8 iseralt.3 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
98ffvelcdmda 7022 . . . 4 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℝ)
109recnd 11162 . . 3 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℂ)
11 1z 12523 . . 3 1 ∈ ℤ
12 uzssz 12774 . . . 4 (ℤ‘1) ⊆ ℤ
13 zex 12498 . . . 4 ℤ ∈ V
1412, 13climconst2 15473 . . 3 (((𝐺𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
1510, 11, 14sylancl 586 . 2 ((𝜑𝑁𝑍) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
168ad2antrr 726 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐺:𝑍⟶ℝ)
173uztrn2 12772 . . . 4 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1817adantll 714 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1916, 18ffvelcdmd 7023 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ∈ ℝ)
20 eluzelz 12763 . . . . 5 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
2120adantl 481 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
22 fvex 6839 . . . . 5 (𝐺𝑁) ∈ V
2322fvconst2 7144 . . . 4 (𝑛 ∈ ℤ → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
2421, 23syl 17 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
259adantr 480 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑁) ∈ ℝ)
2624, 25eqeltrd 2828 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) ∈ ℝ)
27 simpr 484 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
2816adantr 480 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ)
29 simplr 768 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑁𝑍)
30 elfzuz 13441 . . . . . 6 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
313uztrn2 12772 . . . . . 6 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
3229, 30, 31syl2an 596 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
3328, 32ffvelcdmd 7023 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺𝑘) ∈ ℝ)
34 simpl 482 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝜑𝑁𝑍))
35 elfzuz 13441 . . . . 5 (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑁))
3631adantll 714 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
37 iseralt.4 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3837adantlr 715 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3936, 38syldan 591 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4034, 35, 39syl2an 596 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4127, 33, 40monoord2 13958 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ (𝐺𝑁))
4241, 24breqtrrd 5123 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ ((ℤ × {(𝐺𝑁)})‘𝑛))
431, 5, 7, 15, 19, 26, 42climle 15565 1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4579   class class class wbr 5095   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cmin 11365  cz 12489  cuz 12753  ...cfz 13428  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414
This theorem is referenced by:  iseraltlem3  15609  iseralt  15610
  Copyright terms: Public domain W3C validator