Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iseraltlem1 | Structured version Visualization version GIF version |
Description: Lemma for iseralt 15102. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
iseralt.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iseralt.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iseralt.3 | ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
iseralt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
iseralt.5 | ⊢ (𝜑 → 𝐺 ⇝ 0) |
Ref | Expression |
---|---|
iseraltlem1 | ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | eluzelz 12305 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | iseralt.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleq2s 2870 | . . 3 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
5 | 4 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝑁 ∈ ℤ) |
6 | iseralt.5 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) | |
7 | 6 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝐺 ⇝ 0) |
8 | iseralt.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) | |
9 | 8 | ffvelrnda 6848 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℝ) |
10 | 9 | recnd 10720 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℂ) |
11 | 1z 12064 | . . 3 ⊢ 1 ∈ ℤ | |
12 | uzssz 12316 | . . . 4 ⊢ (ℤ≥‘1) ⊆ ℤ | |
13 | zex 12042 | . . . 4 ⊢ ℤ ∈ V | |
14 | 12, 13 | climconst2 14966 | . . 3 ⊢ (((𝐺‘𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
15 | 10, 11, 14 | sylancl 589 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
16 | 8 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝐺:𝑍⟶ℝ) |
17 | 3 | uztrn2 12314 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
18 | 17 | adantll 713 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
19 | 16, 18 | ffvelrnd 6849 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ∈ ℝ) |
20 | eluzelz 12305 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑁) → 𝑛 ∈ ℤ) | |
21 | 20 | adantl 485 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℤ) |
22 | fvex 6676 | . . . . 5 ⊢ (𝐺‘𝑁) ∈ V | |
23 | 22 | fvconst2 6963 | . . . 4 ⊢ (𝑛 ∈ ℤ → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
24 | 21, 23 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
25 | 9 | adantr 484 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑁) ∈ ℝ) |
26 | 24, 25 | eqeltrd 2852 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) ∈ ℝ) |
27 | simpr 488 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ (ℤ≥‘𝑁)) | |
28 | 16 | adantr 484 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ) |
29 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ 𝑍) | |
30 | elfzuz 12965 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | 3 | uztrn2 12314 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
32 | 29, 30, 31 | syl2an 598 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) |
33 | 28, 32 | ffvelrnd 6849 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
34 | simpl 486 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝜑 ∧ 𝑁 ∈ 𝑍)) | |
35 | elfzuz 12965 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
36 | 31 | adantll 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
37 | iseralt.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | |
38 | 37 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
39 | 36, 38 | syldan 594 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
40 | 34, 35, 39 | syl2an 598 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
41 | 27, 33, 40 | monoord2 13464 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ (𝐺‘𝑁)) |
42 | 41, 24 | breqtrrd 5064 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ ((ℤ × {(𝐺‘𝑁)})‘𝑛)) |
43 | 1, 5, 7, 15, 19, 26, 42 | climle 15057 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4525 class class class wbr 5036 × cxp 5526 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 ℝcr 10587 0cc0 10588 1c1 10589 + caddc 10591 ≤ cle 10727 − cmin 10921 ℤcz 12033 ℤ≥cuz 12295 ...cfz 12952 ⇝ cli 14902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-fz 12953 df-fl 13224 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 |
This theorem is referenced by: iseraltlem3 15101 iseralt 15102 |
Copyright terms: Public domain | W3C validator |