|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iseraltlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for iseralt 15722. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| iseralt.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) | 
| iseralt.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| iseralt.3 | ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) | 
| iseralt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | 
| iseralt.5 | ⊢ (𝜑 → 𝐺 ⇝ 0) | 
| Ref | Expression | 
|---|---|
| iseraltlem1 | ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 2 | eluzelz 12889 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 3 | iseralt.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleq2s 2858 | . . 3 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) | 
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝑁 ∈ ℤ) | 
| 6 | iseralt.5 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) | |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝐺 ⇝ 0) | 
| 8 | iseralt.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) | |
| 9 | 8 | ffvelcdmda 7103 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℝ) | 
| 10 | 9 | recnd 11290 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℂ) | 
| 11 | 1z 12649 | . . 3 ⊢ 1 ∈ ℤ | |
| 12 | uzssz 12900 | . . . 4 ⊢ (ℤ≥‘1) ⊆ ℤ | |
| 13 | zex 12624 | . . . 4 ⊢ ℤ ∈ V | |
| 14 | 12, 13 | climconst2 15585 | . . 3 ⊢ (((𝐺‘𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) | 
| 15 | 10, 11, 14 | sylancl 586 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) | 
| 16 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝐺:𝑍⟶ℝ) | 
| 17 | 3 | uztrn2 12898 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) | 
| 18 | 17 | adantll 714 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) | 
| 19 | 16, 18 | ffvelcdmd 7104 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ∈ ℝ) | 
| 20 | eluzelz 12889 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑁) → 𝑛 ∈ ℤ) | |
| 21 | 20 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℤ) | 
| 22 | fvex 6918 | . . . . 5 ⊢ (𝐺‘𝑁) ∈ V | |
| 23 | 22 | fvconst2 7225 | . . . 4 ⊢ (𝑛 ∈ ℤ → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) | 
| 24 | 21, 23 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) | 
| 25 | 9 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑁) ∈ ℝ) | 
| 26 | 24, 25 | eqeltrd 2840 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) ∈ ℝ) | 
| 27 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ (ℤ≥‘𝑁)) | |
| 28 | 16 | adantr 480 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ) | 
| 29 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ 𝑍) | |
| 30 | elfzuz 13561 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
| 31 | 3 | uztrn2 12898 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) | 
| 32 | 29, 30, 31 | syl2an 596 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) | 
| 33 | 28, 32 | ffvelcdmd 7104 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺‘𝑘) ∈ ℝ) | 
| 34 | simpl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝜑 ∧ 𝑁 ∈ 𝑍)) | |
| 35 | elfzuz 13561 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
| 36 | 31 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) | 
| 37 | iseralt.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | |
| 38 | 37 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | 
| 39 | 36, 38 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | 
| 40 | 34, 35, 39 | syl2an 596 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | 
| 41 | 27, 33, 40 | monoord2 14075 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ (𝐺‘𝑁)) | 
| 42 | 41, 24 | breqtrrd 5170 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ ((ℤ × {(𝐺‘𝑁)})‘𝑛)) | 
| 43 | 1, 5, 7, 15, 19, 26, 42 | climle 15677 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4625 class class class wbr 5142 × cxp 5682 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 ≤ cle 11297 − cmin 11493 ℤcz 12615 ℤ≥cuz 12879 ...cfz 13548 ⇝ cli 15521 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fl 13833 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 | 
| This theorem is referenced by: iseraltlem3 15721 iseralt 15722 | 
| Copyright terms: Public domain | W3C validator |