![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseraltlem1 | Structured version Visualization version GIF version |
Description: Lemma for iseralt 15718. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
iseralt.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iseralt.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iseralt.3 | ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
iseralt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
iseralt.5 | ⊢ (𝜑 → 𝐺 ⇝ 0) |
Ref | Expression |
---|---|
iseraltlem1 | ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | eluzelz 12886 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | iseralt.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleq2s 2857 | . . 3 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝑁 ∈ ℤ) |
6 | iseralt.5 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) | |
7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝐺 ⇝ 0) |
8 | iseralt.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) | |
9 | 8 | ffvelcdmda 7104 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℝ) |
10 | 9 | recnd 11287 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℂ) |
11 | 1z 12645 | . . 3 ⊢ 1 ∈ ℤ | |
12 | uzssz 12897 | . . . 4 ⊢ (ℤ≥‘1) ⊆ ℤ | |
13 | zex 12620 | . . . 4 ⊢ ℤ ∈ V | |
14 | 12, 13 | climconst2 15581 | . . 3 ⊢ (((𝐺‘𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
15 | 10, 11, 14 | sylancl 586 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
16 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝐺:𝑍⟶ℝ) |
17 | 3 | uztrn2 12895 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
18 | 17 | adantll 714 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
19 | 16, 18 | ffvelcdmd 7105 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ∈ ℝ) |
20 | eluzelz 12886 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑁) → 𝑛 ∈ ℤ) | |
21 | 20 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℤ) |
22 | fvex 6920 | . . . . 5 ⊢ (𝐺‘𝑁) ∈ V | |
23 | 22 | fvconst2 7224 | . . . 4 ⊢ (𝑛 ∈ ℤ → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
24 | 21, 23 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
25 | 9 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑁) ∈ ℝ) |
26 | 24, 25 | eqeltrd 2839 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) ∈ ℝ) |
27 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ (ℤ≥‘𝑁)) | |
28 | 16 | adantr 480 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ) |
29 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ 𝑍) | |
30 | elfzuz 13557 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | 3 | uztrn2 12895 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
32 | 29, 30, 31 | syl2an 596 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) |
33 | 28, 32 | ffvelcdmd 7105 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
34 | simpl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝜑 ∧ 𝑁 ∈ 𝑍)) | |
35 | elfzuz 13557 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
36 | 31 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
37 | iseralt.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | |
38 | 37 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
39 | 36, 38 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
40 | 34, 35, 39 | syl2an 596 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
41 | 27, 33, 40 | monoord2 14071 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ (𝐺‘𝑁)) |
42 | 41, 24 | breqtrrd 5176 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ ((ℤ × {(𝐺‘𝑁)})‘𝑛)) |
43 | 1, 5, 7, 15, 19, 26, 42 | climle 15673 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 class class class wbr 5148 × cxp 5687 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 ≤ cle 11294 − cmin 11490 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 ⇝ cli 15517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fl 13829 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 |
This theorem is referenced by: iseraltlem3 15717 iseralt 15718 |
Copyright terms: Public domain | W3C validator |