Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iseraltlem1 | Structured version Visualization version GIF version |
Description: Lemma for iseralt 15324. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
iseralt.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iseralt.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iseralt.3 | ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
iseralt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
iseralt.5 | ⊢ (𝜑 → 𝐺 ⇝ 0) |
Ref | Expression |
---|---|
iseraltlem1 | ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
2 | eluzelz 12521 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | iseralt.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleq2s 2857 | . . 3 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝑁 ∈ ℤ) |
6 | iseralt.5 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) | |
7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝐺 ⇝ 0) |
8 | iseralt.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) | |
9 | 8 | ffvelrnda 6943 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℝ) |
10 | 9 | recnd 10934 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℂ) |
11 | 1z 12280 | . . 3 ⊢ 1 ∈ ℤ | |
12 | uzssz 12532 | . . . 4 ⊢ (ℤ≥‘1) ⊆ ℤ | |
13 | zex 12258 | . . . 4 ⊢ ℤ ∈ V | |
14 | 12, 13 | climconst2 15185 | . . 3 ⊢ (((𝐺‘𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
15 | 10, 11, 14 | sylancl 585 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
16 | 8 | ad2antrr 722 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝐺:𝑍⟶ℝ) |
17 | 3 | uztrn2 12530 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
18 | 17 | adantll 710 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
19 | 16, 18 | ffvelrnd 6944 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ∈ ℝ) |
20 | eluzelz 12521 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑁) → 𝑛 ∈ ℤ) | |
21 | 20 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℤ) |
22 | fvex 6769 | . . . . 5 ⊢ (𝐺‘𝑁) ∈ V | |
23 | 22 | fvconst2 7061 | . . . 4 ⊢ (𝑛 ∈ ℤ → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
24 | 21, 23 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
25 | 9 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑁) ∈ ℝ) |
26 | 24, 25 | eqeltrd 2839 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) ∈ ℝ) |
27 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ (ℤ≥‘𝑁)) | |
28 | 16 | adantr 480 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ) |
29 | simplr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ 𝑍) | |
30 | elfzuz 13181 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
31 | 3 | uztrn2 12530 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
32 | 29, 30, 31 | syl2an 595 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) |
33 | 28, 32 | ffvelrnd 6944 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
34 | simpl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝜑 ∧ 𝑁 ∈ 𝑍)) | |
35 | elfzuz 13181 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
36 | 31 | adantll 710 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
37 | iseralt.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | |
38 | 37 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
39 | 36, 38 | syldan 590 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
40 | 34, 35, 39 | syl2an 595 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
41 | 27, 33, 40 | monoord2 13682 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ (𝐺‘𝑁)) |
42 | 41, 24 | breqtrrd 5098 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ ((ℤ × {(𝐺‘𝑁)})‘𝑛)) |
43 | 1, 5, 7, 15, 19, 26, 42 | climle 15277 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 ≤ cle 10941 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 |
This theorem is referenced by: iseraltlem3 15323 iseralt 15324 |
Copyright terms: Public domain | W3C validator |