MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem1 Structured version   Visualization version   GIF version

Theorem iseraltlem1 15610
Description: Lemma for iseralt 15613. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
Assertion
Ref Expression
iseraltlem1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (ℤ𝑁) = (ℤ𝑁)
2 eluzelz 12814 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 iseralt.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleq2s 2850 . . 3 (𝑁𝑍𝑁 ∈ ℤ)
54adantl 482 . 2 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
6 iseralt.5 . . 3 (𝜑𝐺 ⇝ 0)
76adantr 481 . 2 ((𝜑𝑁𝑍) → 𝐺 ⇝ 0)
8 iseralt.3 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
98ffvelcdmda 7071 . . . 4 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℝ)
109recnd 11224 . . 3 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℂ)
11 1z 12574 . . 3 1 ∈ ℤ
12 uzssz 12825 . . . 4 (ℤ‘1) ⊆ ℤ
13 zex 12549 . . . 4 ℤ ∈ V
1412, 13climconst2 15474 . . 3 (((𝐺𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
1510, 11, 14sylancl 586 . 2 ((𝜑𝑁𝑍) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
168ad2antrr 724 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐺:𝑍⟶ℝ)
173uztrn2 12823 . . . 4 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1817adantll 712 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1916, 18ffvelcdmd 7072 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ∈ ℝ)
20 eluzelz 12814 . . . . 5 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
2120adantl 482 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
22 fvex 6891 . . . . 5 (𝐺𝑁) ∈ V
2322fvconst2 7189 . . . 4 (𝑛 ∈ ℤ → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
2421, 23syl 17 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
259adantr 481 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑁) ∈ ℝ)
2624, 25eqeltrd 2832 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) ∈ ℝ)
27 simpr 485 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
2816adantr 481 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ)
29 simplr 767 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑁𝑍)
30 elfzuz 13479 . . . . . 6 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
313uztrn2 12823 . . . . . 6 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
3229, 30, 31syl2an 596 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
3328, 32ffvelcdmd 7072 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺𝑘) ∈ ℝ)
34 simpl 483 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝜑𝑁𝑍))
35 elfzuz 13479 . . . . 5 (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑁))
3631adantll 712 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
37 iseralt.4 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3837adantlr 713 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3936, 38syldan 591 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4034, 35, 39syl2an 596 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4127, 33, 40monoord2 13981 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ (𝐺𝑁))
4241, 24breqtrrd 5169 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ ((ℤ × {(𝐺𝑁)})‘𝑛))
431, 5, 7, 15, 19, 26, 42climle 15566 1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4622   class class class wbr 5141   × cxp 5667  wf 6528  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  1c1 11093   + caddc 11095  cle 11231  cmin 11426  cz 12540  cuz 12804  ...cfz 13466  cli 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-fl 13739  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-rlim 15415
This theorem is referenced by:  iseraltlem3  15612  iseralt  15613
  Copyright terms: Public domain W3C validator