MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem1 Structured version   Visualization version   GIF version

Theorem iseraltlem1 15593
Description: Lemma for iseralt 15596. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
Assertion
Ref Expression
iseraltlem1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (ℤ𝑁) = (ℤ𝑁)
2 eluzelz 12750 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 iseralt.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleq2s 2851 . . 3 (𝑁𝑍𝑁 ∈ ℤ)
54adantl 481 . 2 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
6 iseralt.5 . . 3 (𝜑𝐺 ⇝ 0)
76adantr 480 . 2 ((𝜑𝑁𝑍) → 𝐺 ⇝ 0)
8 iseralt.3 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
98ffvelcdmda 7025 . . . 4 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℝ)
109recnd 11149 . . 3 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℂ)
11 1z 12510 . . 3 1 ∈ ℤ
12 uzssz 12761 . . . 4 (ℤ‘1) ⊆ ℤ
13 zex 12486 . . . 4 ℤ ∈ V
1412, 13climconst2 15459 . . 3 (((𝐺𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
1510, 11, 14sylancl 586 . 2 ((𝜑𝑁𝑍) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
168ad2antrr 726 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐺:𝑍⟶ℝ)
173uztrn2 12759 . . . 4 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1817adantll 714 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1916, 18ffvelcdmd 7026 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ∈ ℝ)
20 eluzelz 12750 . . . . 5 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
2120adantl 481 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
22 fvex 6843 . . . . 5 (𝐺𝑁) ∈ V
2322fvconst2 7146 . . . 4 (𝑛 ∈ ℤ → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
2421, 23syl 17 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
259adantr 480 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑁) ∈ ℝ)
2624, 25eqeltrd 2833 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) ∈ ℝ)
27 simpr 484 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
2816adantr 480 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ)
29 simplr 768 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑁𝑍)
30 elfzuz 13424 . . . . . 6 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
313uztrn2 12759 . . . . . 6 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
3229, 30, 31syl2an 596 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
3328, 32ffvelcdmd 7026 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺𝑘) ∈ ℝ)
34 simpl 482 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝜑𝑁𝑍))
35 elfzuz 13424 . . . . 5 (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑁))
3631adantll 714 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
37 iseralt.4 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3837adantlr 715 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3936, 38syldan 591 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4034, 35, 39syl2an 596 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4127, 33, 40monoord2 13944 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ (𝐺𝑁))
4241, 24breqtrrd 5123 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ ((ℤ × {(𝐺𝑁)})‘𝑛))
431, 5, 7, 15, 19, 26, 42climle 15551 1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {csn 4577   class class class wbr 5095   × cxp 5619  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018  cle 11156  cmin 11353  cz 12477  cuz 12740  ...cfz 13411  cli 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fl 13700  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-rlim 15400
This theorem is referenced by:  iseraltlem3  15595  iseralt  15596
  Copyright terms: Public domain W3C validator