MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem1 Structured version   Visualization version   GIF version

Theorem iseraltlem1 15589
Description: Lemma for iseralt 15592. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
Assertion
Ref Expression
iseraltlem1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (ℤ𝑁) = (ℤ𝑁)
2 eluzelz 12742 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 iseralt.1 . . . 4 𝑍 = (ℤ𝑀)
42, 3eleq2s 2849 . . 3 (𝑁𝑍𝑁 ∈ ℤ)
54adantl 481 . 2 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
6 iseralt.5 . . 3 (𝜑𝐺 ⇝ 0)
76adantr 480 . 2 ((𝜑𝑁𝑍) → 𝐺 ⇝ 0)
8 iseralt.3 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
98ffvelcdmda 7017 . . . 4 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℝ)
109recnd 11140 . . 3 ((𝜑𝑁𝑍) → (𝐺𝑁) ∈ ℂ)
11 1z 12502 . . 3 1 ∈ ℤ
12 uzssz 12753 . . . 4 (ℤ‘1) ⊆ ℤ
13 zex 12477 . . . 4 ℤ ∈ V
1412, 13climconst2 15455 . . 3 (((𝐺𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
1510, 11, 14sylancl 586 . 2 ((𝜑𝑁𝑍) → (ℤ × {(𝐺𝑁)}) ⇝ (𝐺𝑁))
168ad2antrr 726 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐺:𝑍⟶ℝ)
173uztrn2 12751 . . . 4 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1817adantll 714 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1916, 18ffvelcdmd 7018 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ∈ ℝ)
20 eluzelz 12742 . . . . 5 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
2120adantl 481 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
22 fvex 6835 . . . . 5 (𝐺𝑁) ∈ V
2322fvconst2 7138 . . . 4 (𝑛 ∈ ℤ → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
2421, 23syl 17 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) = (𝐺𝑁))
259adantr 480 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑁) ∈ ℝ)
2624, 25eqeltrd 2831 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → ((ℤ × {(𝐺𝑁)})‘𝑛) ∈ ℝ)
27 simpr 484 . . . 4 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
2816adantr 480 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ)
29 simplr 768 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑁𝑍)
30 elfzuz 13420 . . . . . 6 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
313uztrn2 12751 . . . . . 6 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
3229, 30, 31syl2an 596 . . . . 5 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
3328, 32ffvelcdmd 7018 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺𝑘) ∈ ℝ)
34 simpl 482 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝜑𝑁𝑍))
35 elfzuz 13420 . . . . 5 (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑁))
3631adantll 714 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
37 iseralt.4 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3837adantlr 715 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
3936, 38syldan 591 . . . . 5 (((𝜑𝑁𝑍) ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4034, 35, 39syl2an 596 . . . 4 ((((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
4127, 33, 40monoord2 13940 . . 3 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ (𝐺𝑁))
4241, 24breqtrrd 5119 . 2 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐺𝑛) ≤ ((ℤ × {(𝐺𝑁)})‘𝑛))
431, 5, 7, 15, 19, 26, 42climle 15547 1 ((𝜑𝑁𝑍) → 0 ≤ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4576   class class class wbr 5091   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  cmin 11344  cz 12468  cuz 12732  ...cfz 13407  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396
This theorem is referenced by:  iseraltlem3  15591  iseralt  15592
  Copyright terms: Public domain W3C validator