| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iseraltlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for iseralt 15706. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| Ref | Expression |
|---|---|
| iseralt.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iseralt.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iseralt.3 | ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
| iseralt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
| iseralt.5 | ⊢ (𝜑 → 𝐺 ⇝ 0) |
| Ref | Expression |
|---|---|
| iseraltlem1 | ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 2 | eluzelz 12867 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 3 | iseralt.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleq2s 2853 | . . 3 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝑁 ∈ ℤ) |
| 6 | iseralt.5 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 0) | |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 𝐺 ⇝ 0) |
| 8 | iseralt.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) | |
| 9 | 8 | ffvelcdmda 7079 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℝ) |
| 10 | 9 | recnd 11268 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (𝐺‘𝑁) ∈ ℂ) |
| 11 | 1z 12627 | . . 3 ⊢ 1 ∈ ℤ | |
| 12 | uzssz 12878 | . . . 4 ⊢ (ℤ≥‘1) ⊆ ℤ | |
| 13 | zex 12602 | . . . 4 ⊢ ℤ ∈ V | |
| 14 | 12, 13 | climconst2 15569 | . . 3 ⊢ (((𝐺‘𝑁) ∈ ℂ ∧ 1 ∈ ℤ) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
| 15 | 10, 11, 14 | sylancl 586 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → (ℤ × {(𝐺‘𝑁)}) ⇝ (𝐺‘𝑁)) |
| 16 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝐺:𝑍⟶ℝ) |
| 17 | 3 | uztrn2 12876 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
| 18 | 17 | adantll 714 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
| 19 | 16, 18 | ffvelcdmd 7080 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ∈ ℝ) |
| 20 | eluzelz 12867 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑁) → 𝑛 ∈ ℤ) | |
| 21 | 20 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℤ) |
| 22 | fvex 6894 | . . . . 5 ⊢ (𝐺‘𝑁) ∈ V | |
| 23 | 22 | fvconst2 7201 | . . . 4 ⊢ (𝑛 ∈ ℤ → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
| 24 | 21, 23 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) = (𝐺‘𝑁)) |
| 25 | 9 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑁) ∈ ℝ) |
| 26 | 24, 25 | eqeltrd 2835 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((ℤ × {(𝐺‘𝑁)})‘𝑛) ∈ ℝ) |
| 27 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ (ℤ≥‘𝑁)) | |
| 28 | 16 | adantr 480 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝐺:𝑍⟶ℝ) |
| 29 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ 𝑍) | |
| 30 | elfzuz 13542 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
| 31 | 3 | uztrn2 12876 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
| 32 | 29, 30, 31 | syl2an 596 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) |
| 33 | 28, 32 | ffvelcdmd 7080 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
| 34 | simpl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝜑 ∧ 𝑁 ∈ 𝑍)) | |
| 35 | elfzuz 13542 | . . . . 5 ⊢ (𝑘 ∈ (𝑁...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑁)) | |
| 36 | 31 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
| 37 | iseralt.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) | |
| 38 | 37 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
| 39 | 36, 38 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
| 40 | 34, 35, 39 | syl2an 596 | . . . 4 ⊢ ((((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑁...(𝑛 − 1))) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
| 41 | 27, 33, 40 | monoord2 14056 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ (𝐺‘𝑁)) |
| 42 | 41, 24 | breqtrrd 5152 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑛) ≤ ((ℤ × {(𝐺‘𝑁)})‘𝑛)) |
| 43 | 1, 5, 7, 15, 19, 26, 42 | climle 15661 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 class class class wbr 5124 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 ≤ cle 11275 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fl 13814 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 |
| This theorem is referenced by: iseraltlem3 15705 iseralt 15706 |
| Copyright terms: Public domain | W3C validator |