Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpf Structured version   Visualization version   GIF version

Theorem mzpf 39200
Description: A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpf (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ)

Proof of Theorem mzpf
StepHypRef Expression
1 elfvex 6699 . . . . 5 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
2 mzpval 39196 . . . . . 6 (𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
3 mzpclall 39191 . . . . . . 7 (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉))
4 intss1 4888 . . . . . . 7 ((ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉) → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
53, 4syl 17 . . . . . 6 (𝑉 ∈ V → (mzPolyCld‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
62, 5eqsstrd 4008 . . . . 5 (𝑉 ∈ V → (mzPoly‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
71, 6syl 17 . . . 4 (𝐹 ∈ (mzPoly‘𝑉) → (mzPoly‘𝑉) ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
87sselda 3970 . . 3 ((𝐹 ∈ (mzPoly‘𝑉) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝐹 ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
98anidms 567 . 2 (𝐹 ∈ (mzPoly‘𝑉) → 𝐹 ∈ (ℤ ↑m (ℤ ↑m 𝑉)))
10 zex 11982 . . 3 ℤ ∈ V
11 ovex 7184 . . 3 (ℤ ↑m 𝑉) ∈ V
1210, 11elmap 8428 . 2 (𝐹 ∈ (ℤ ↑m (ℤ ↑m 𝑉)) ↔ 𝐹:(ℤ ↑m 𝑉)⟶ℤ)
139, 12sylib 219 1 (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3499  wss 3939   cint 4873  wf 6347  cfv 6351  (class class class)co 7151  m cmap 8399  cz 11973  mzPolyCldcmzpcl 39185  mzPolycmzp 39186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-mzpcl 39187  df-mzp 39188
This theorem is referenced by:  mzpaddmpt  39205  mzpmulmpt  39206  mzpsubmpt  39207  mzpexpmpt  39209  mzpsubst  39212  mzpcompact2lem  39215  diophin  39236  diophun  39237  eq0rabdioph  39240  eqrabdioph  39241  rabdiophlem1  39265  rabdiophlem2  39266
  Copyright terms: Public domain W3C validator