| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climmulc2 | Structured version Visualization version GIF version | ||
| Description: Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| Ref | Expression |
|---|---|
| climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climmulc2.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| climmulc2 | ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 0z 12490 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | uzssz 12763 | . . . 4 ⊢ (ℤ≥‘0) ⊆ ℤ | |
| 6 | zex 12488 | . . . 4 ⊢ ℤ ∈ V | |
| 7 | 5, 6 | climconst2 15462 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶) |
| 8 | 3, 4, 7 | sylancl 586 | . 2 ⊢ (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶) |
| 9 | climaddc1.6 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 10 | climadd.4 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 11 | eluzelz 12752 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
| 12 | 11, 1 | eleq2s 2851 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 13 | fvconst2g 7145 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶) | |
| 14 | 3, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶) |
| 15 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) |
| 16 | 14, 15 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ) |
| 17 | climaddc1.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 18 | climmulc2.h | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) | |
| 19 | 14 | oveq1d 7370 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ × {𝐶})‘𝑘) · (𝐹‘𝑘)) = (𝐶 · (𝐹‘𝑘))) |
| 20 | 18, 19 | eqtr4d 2771 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (((ℤ × {𝐶})‘𝑘) · (𝐹‘𝑘))) |
| 21 | 1, 2, 8, 9, 10, 16, 17, 20 | climmul 15547 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 class class class wbr 5095 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 0cc0 11017 · cmul 11022 ℤcz 12479 ℤ≥cuz 12742 ⇝ cli 15398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 |
| This theorem is referenced by: isermulc2 15572 geolim 15784 geo2lim 15789 clim2prod 15802 clim2div 15803 itg1climres 25662 itg2monolem1 25698 circum 35790 faclimlem2 35860 geomcau 37872 radcnvrat 44471 wallispi 46230 stirlinglem1 46234 stirlinglem7 46240 stirlinglem15 46248 |
| Copyright terms: Public domain | W3C validator |