MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmulc2 Structured version   Visualization version   GIF version

Theorem climmulc2 15525
Description: Limit of a sequence multiplied by a constant ๐ถ. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 ๐‘ = (โ„คโ‰ฅโ€˜๐‘€)
climadd.2 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„ค)
climadd.4 (๐œ‘ โ†’ ๐น โ‡ ๐ด)
climaddc1.5 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
climaddc1.6 (๐œ‘ โ†’ ๐บ โˆˆ ๐‘Š)
climaddc1.7 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐นโ€˜๐‘˜) โˆˆ โ„‚)
climmulc2.h ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐บโ€˜๐‘˜) = (๐ถ ยท (๐นโ€˜๐‘˜)))
Assertion
Ref Expression
climmulc2 (๐œ‘ โ†’ ๐บ โ‡ (๐ถ ยท ๐ด))
Distinct variable groups:   ๐ถ,๐‘˜   ๐‘˜,๐น   ๐œ‘,๐‘˜   ๐ด,๐‘˜   ๐‘˜,๐บ   ๐‘˜,๐‘€   ๐‘˜,๐‘
Allowed substitution hint:   ๐‘Š(๐‘˜)

Proof of Theorem climmulc2
StepHypRef Expression
1 climadd.1 . 2 ๐‘ = (โ„คโ‰ฅโ€˜๐‘€)
2 climadd.2 . 2 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„ค)
3 climaddc1.5 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
4 0z 12515 . . 3 0 โˆˆ โ„ค
5 uzssz 12789 . . . 4 (โ„คโ‰ฅโ€˜0) โŠ† โ„ค
6 zex 12513 . . . 4 โ„ค โˆˆ V
75, 6climconst2 15436 . . 3 ((๐ถ โˆˆ โ„‚ โˆง 0 โˆˆ โ„ค) โ†’ (โ„ค ร— {๐ถ}) โ‡ ๐ถ)
83, 4, 7sylancl 587 . 2 (๐œ‘ โ†’ (โ„ค ร— {๐ถ}) โ‡ ๐ถ)
9 climaddc1.6 . 2 (๐œ‘ โ†’ ๐บ โˆˆ ๐‘Š)
10 climadd.4 . 2 (๐œ‘ โ†’ ๐น โ‡ ๐ด)
11 eluzelz 12778 . . . . 5 (๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜๐‘€) โ†’ ๐‘˜ โˆˆ โ„ค)
1211, 1eleq2s 2852 . . . 4 (๐‘˜ โˆˆ ๐‘ โ†’ ๐‘˜ โˆˆ โ„ค)
13 fvconst2g 7152 . . . 4 ((๐ถ โˆˆ โ„‚ โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ((โ„ค ร— {๐ถ})โ€˜๐‘˜) = ๐ถ)
143, 12, 13syl2an 597 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ ((โ„ค ร— {๐ถ})โ€˜๐‘˜) = ๐ถ)
153adantr 482 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ ๐ถ โˆˆ โ„‚)
1614, 15eqeltrd 2834 . 2 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ ((โ„ค ร— {๐ถ})โ€˜๐‘˜) โˆˆ โ„‚)
17 climaddc1.7 . 2 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐นโ€˜๐‘˜) โˆˆ โ„‚)
18 climmulc2.h . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐บโ€˜๐‘˜) = (๐ถ ยท (๐นโ€˜๐‘˜)))
1914oveq1d 7373 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (((โ„ค ร— {๐ถ})โ€˜๐‘˜) ยท (๐นโ€˜๐‘˜)) = (๐ถ ยท (๐นโ€˜๐‘˜)))
2018, 19eqtr4d 2776 . 2 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐‘) โ†’ (๐บโ€˜๐‘˜) = (((โ„ค ร— {๐ถ})โ€˜๐‘˜) ยท (๐นโ€˜๐‘˜)))
211, 2, 8, 9, 10, 16, 17, 20climmul 15521 1 (๐œ‘ โ†’ ๐บ โ‡ (๐ถ ยท ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  {csn 4587   class class class wbr 5106   ร— cxp 5632  โ€˜cfv 6497  (class class class)co 7358  โ„‚cc 11054  0cc0 11056   ยท cmul 11061  โ„คcz 12504  โ„คโ‰ฅcuz 12768   โ‡ cli 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-seq 13913  df-exp 13974  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376
This theorem is referenced by:  isermulc2  15548  geolim  15760  geo2lim  15765  clim2prod  15778  clim2div  15779  itg1climres  25095  itg2monolem1  25131  circum  34319  faclimlem2  34373  geomcau  36264  radcnvrat  42682  wallispi  44397  stirlinglem1  44401  stirlinglem7  44407  stirlinglem15  44415
  Copyright terms: Public domain W3C validator