ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  perfect1 GIF version

Theorem perfect1 15680
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 15679 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
2 prmnn 12640 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 14 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
4 1sgm2ppw 15677 . . . 4 (𝑃 ∈ ℕ → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
53, 4syl 14 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
6 1sgmprm 15676 . . . . 5 (((2↑𝑃) − 1) ∈ ℙ → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
76adantl 277 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
8 2nn 9280 . . . . . . 7 2 ∈ ℕ
93nnnn0d 9430 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ0)
10 nnexpcl 10782 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℕ)
118, 9, 10sylancr 414 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℕ)
1211nncnd 9132 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℂ)
13 ax-1cn 8100 . . . . 5 1 ∈ ℂ
14 npcan 8363 . . . . 5 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
1512, 13, 14sylancl 413 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
167, 15eqtrd 2262 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (2↑𝑃))
175, 16oveq12d 6025 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))) = (((2↑𝑃) − 1) · (2↑𝑃)))
1813a1i 9 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℂ)
19 nnm1nn0 9418 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
203, 19syl 14 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑃 − 1) ∈ ℕ0)
21 nnexpcl 10782 . . . 4 ((2 ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ0) → (2↑(𝑃 − 1)) ∈ ℕ)
228, 20, 21sylancr 414 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℕ)
23 prmnn 12640 . . . 4 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2423adantl 277 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℕ)
2522nnzd 9576 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℤ)
26 prmz 12641 . . . . . 6 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℤ)
2726adantl 277 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℤ)
2825, 27gcdcomd 12503 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
29 iddvds 12323 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℤ → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
3027, 29syl 14 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
31 prmuz2 12661 . . . . . . . . . 10 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
3231adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
33 eluz2gt1 9805 . . . . . . . . 9 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
3432, 33syl 14 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
35 ndvdsp1 12451 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3627, 24, 34, 35syl3anc 1271 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3730, 36mpd 13 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1))
38 2z 9482 . . . . . . . . 9 2 ∈ ℤ
3938a1i 9 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℤ)
40 dvdsmultr1 12350 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ (2↑(𝑃 − 1)) ∈ ℤ ∧ 2 ∈ ℤ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
4127, 25, 39, 40syl3anc 1271 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
42 2cn 9189 . . . . . . . . . 10 2 ∈ ℂ
43 expm1t 10797 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4442, 3, 43sylancr 414 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4515, 44eqtr2d 2263 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) · 2) = (((2↑𝑃) − 1) + 1))
4645breq2d 4095 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2) ↔ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4741, 46sylibd 149 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4837, 47mtod 667 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)))
49 simpr 110 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℙ)
50 coprm 12674 . . . . . 6 ((((2↑𝑃) − 1) ∈ ℙ ∧ (2↑(𝑃 − 1)) ∈ ℤ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5149, 25, 50syl2anc 411 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5248, 51mpbid 147 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1)
5328, 52eqtrd 2262 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)
54 sgmmul 15678 . . 3 ((1 ∈ ℂ ∧ ((2↑(𝑃 − 1)) ∈ ℕ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
5518, 22, 24, 53, 54syl13anc 1273 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
56 subcl 8353 . . . 4 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑃) − 1) ∈ ℂ)
5712, 13, 56sylancl 413 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℂ)
5812, 57mulcomd 8176 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) · ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) · (2↑𝑃)))
5917, 55, 583eqtr4d 2272 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cmin 8325  cn 9118  2c2 9169  0cn0 9377  cz 9454  cuz 9730  cexp 10768  cdvds 12306   gcd cgcd 12482  cprime 12637   σ csgm 15663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-ico 10098  df-icc 10099  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-bc 10978  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-e 12168  df-dvds 12307  df-gcd 12483  df-prm 12638  df-pc 12816  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339  df-relog 15540  df-rpcxp 15541  df-sgm 15664
This theorem is referenced by:  perfect  15683
  Copyright terms: Public domain W3C validator