![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gcddvdslcm | GIF version |
Description: The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
gcddvdslcm | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcddvds 11497 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
2 | 1 | simpld 111 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀) |
3 | dvdslcm 11593 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
4 | 3 | simpld 111 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 lcm 𝑁)) |
5 | gcdcl 11500 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
6 | 5 | nn0zd 9072 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ) |
7 | simpl 108 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
8 | lcmcl 11596 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
9 | 8 | nn0zd 9072 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ) |
10 | dvdstr 11375 | . . 3 ⊢ (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ 𝑀 ∥ (𝑀 lcm 𝑁)) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁))) | |
11 | 6, 7, 9, 10 | syl3anc 1199 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ 𝑀 ∥ (𝑀 lcm 𝑁)) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁))) |
12 | 2, 4, 11 | mp2and 427 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1463 class class class wbr 3895 (class class class)co 5728 ℤcz 8955 ∥ cdvds 11338 gcd cgcd 11480 lcm clcm 11584 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7633 ax-resscn 7634 ax-1cn 7635 ax-1re 7636 ax-icn 7637 ax-addcl 7638 ax-addrcl 7639 ax-mulcl 7640 ax-mulrcl 7641 ax-addcom 7642 ax-mulcom 7643 ax-addass 7644 ax-mulass 7645 ax-distr 7646 ax-i2m1 7647 ax-0lt1 7648 ax-1rid 7649 ax-0id 7650 ax-rnegex 7651 ax-precex 7652 ax-cnre 7653 ax-pre-ltirr 7654 ax-pre-ltwlin 7655 ax-pre-lttrn 7656 ax-pre-apti 7657 ax-pre-ltadd 7658 ax-pre-mulgt0 7659 ax-pre-mulext 7660 ax-arch 7661 ax-caucvg 7662 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-isom 5090 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-sup 6823 df-inf 6824 df-pnf 7723 df-mnf 7724 df-xr 7725 df-ltxr 7726 df-le 7727 df-sub 7855 df-neg 7856 df-reap 8252 df-ap 8259 df-div 8343 df-inn 8628 df-2 8686 df-3 8687 df-4 8688 df-n0 8879 df-z 8956 df-uz 9226 df-q 9311 df-rp 9341 df-fz 9681 df-fzo 9810 df-fl 9933 df-mod 9986 df-seqfrec 10109 df-exp 10183 df-cj 10504 df-re 10505 df-im 10506 df-rsqrt 10659 df-abs 10660 df-dvds 11339 df-gcd 11481 df-lcm 11585 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |