| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqclg | GIF version | ||
| Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqcl.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| seqcl.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| seqcl.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| seqclg.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| seqclg.p | ⊢ (𝜑 → + ∈ 𝑊) |
| Ref | Expression |
|---|---|
| seqclg | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcl.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | seqclg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐹 ∈ 𝑉) |
| 4 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | fvexg 5648 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) | |
| 6 | 3, 4, 5 | sylancl 413 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
| 7 | seqcl.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 8 | seqcl.3 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 9 | ssv 3246 | . . 3 ⊢ 𝑆 ⊆ V | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑆 ⊆ V) |
| 11 | seqclg.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 12 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V) | |
| 13 | ovexg 6041 | . . 3 ⊢ ((𝑥 ∈ V ∧ + ∈ 𝑊 ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V) | |
| 14 | 4, 11, 12, 13 | mp3an2ani 1378 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
| 15 | 1, 6, 7, 8, 10, 14 | seq3clss 10701 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 ℤ≥cuz 9730 ...cfz 10212 seqcseq 10677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-seqfrec 10678 |
| This theorem is referenced by: seqsplitg 10719 seqcaopr2g 10724 seqf1oglem2a 10748 seqf1oglem2 10750 seqhomog 10760 gsumfzsubmcl 13883 |
| Copyright terms: Public domain | W3C validator |