ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqsplitg GIF version

Theorem seqsplitg 10706
Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqsplit.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqsplit.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqsplit.3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
seqsplitg.p (𝜑+𝑉)
seqsplitg.f (𝜑𝐹𝑊)
seqsplit.4 (𝜑𝑀 ∈ (ℤ𝐾))
seqsplit.5 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
Assertion
Ref Expression
seqsplitg (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐾,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem seqsplitg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqsplit.3 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 10224 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2292 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 5626 . . . . . . 7 (𝑥 = (𝑀 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑀 + 1)))
6 fveq2 5626 . . . . . . . 8 (𝑥 = (𝑀 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))
76oveq2d 6016 . . . . . . 7 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))
85, 7eqeq12d 2244 . . . . . 6 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))
94, 8imbi12d 234 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))
109imbi2d 230 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))))
11 eleq1 2292 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
12 fveq2 5626 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑛))
13 fveq2 5626 . . . . . . . 8 (𝑥 = 𝑛 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑛))
1413oveq2d 6016 . . . . . . 7 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))
1512, 14eqeq12d 2244 . . . . . 6 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))
1611, 15imbi12d 234 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))
1716imbi2d 230 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))))
18 eleq1 2292 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
19 fveq2 5626 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑛 + 1)))
20 fveq2 5626 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))
2120oveq2d 6016 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))
2219, 21eqeq12d 2244 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))
2318, 22imbi12d 234 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))))
2423imbi2d 230 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))))
25 eleq1 2292 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
26 fveq2 5626 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑁))
27 fveq2 5626 . . . . . . . 8 (𝑥 = 𝑁 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
2827oveq2d 6016 . . . . . . 7 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
2926, 28eqeq12d 2244 . . . . . 6 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))
3025, 29imbi12d 234 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))
3130imbi2d 230 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))))
32 seqsplit.4 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝐾))
33 seqsplitg.f . . . . . . 7 (𝜑𝐹𝑊)
34 seqsplitg.p . . . . . . 7 (𝜑+𝑉)
35 seqp1g 10683 . . . . . . 7 ((𝑀 ∈ (ℤ𝐾) ∧ 𝐹𝑊+𝑉) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
3632, 33, 34, 35syl3anc 1271 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
37 eluzel2 9723 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ∈ ℤ)
381, 37syl 14 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
39 seq1g 10680 . . . . . . . 8 (((𝑀 + 1) ∈ ℤ ∧ 𝐹𝑊+𝑉) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1)))
4038, 33, 34, 39syl3anc 1271 . . . . . . 7 (𝜑 → (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1)))
4140oveq2d 6016 . . . . . 6 (𝜑 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
4236, 41eqtr4d 2265 . . . . 5 (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))
4342a1i13 24 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))
44 peano2fzr 10229 . . . . . . . 8 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4544adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
4645expr 375 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
4746imim1d 75 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))
48 oveq1 6007 . . . . . 6 ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))
49 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ‘(𝑀 + 1)))
50 peano2uz 9774 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐾) → (𝑀 + 1) ∈ (ℤ𝐾))
5132, 50syl 14 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ𝐾))
5251adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈ (ℤ𝐾))
53 uztrn 9735 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
5449, 52, 53syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝐾))
5533adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝐹𝑊)
5634adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → +𝑉)
57 seqp1g 10683 . . . . . . . 8 ((𝑛 ∈ (ℤ𝐾) ∧ 𝐹𝑊+𝑉) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5854, 55, 56, 57syl3anc 1271 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
59 seqp1g 10683 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝐹𝑊+𝑉) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6049, 55, 56, 59syl3anc 1271 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6160oveq2d 6016 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
62 simpl 109 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝜑)
63 eluzelz 9727 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
6432, 63syl 14 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
65 peano2uzr 9776 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ𝑀))
6664, 1, 65syl2anc 411 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
67 fzss2 10256 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → (𝐾...𝑀) ⊆ (𝐾...𝑁))
6866, 67syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝐾...𝑀) ⊆ (𝐾...𝑁))
6968sselda 3224 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑀)) → 𝑥 ∈ (𝐾...𝑁))
70 seqsplit.5 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
7169, 70syldan 282 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐾...𝑀)) → (𝐹𝑥) ∈ 𝑆)
72 seqsplit.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7332, 71, 72, 33, 34seqclg 10689 . . . . . . . . . 10 (𝜑 → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆)
7473adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆)
75 elfzuz3 10214 . . . . . . . . . . . . . 14 (𝑛 ∈ ((𝑀 + 1)...𝑁) → 𝑁 ∈ (ℤ𝑛))
76 fzss2 10256 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑛) → ((𝑀 + 1)...𝑛) ⊆ ((𝑀 + 1)...𝑁))
7745, 75, 763syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝑀 + 1)...𝑛) ⊆ ((𝑀 + 1)...𝑁))
78 fzss1 10255 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ∈ (ℤ𝐾) → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
7932, 50, 783syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
8079adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
8177, 80sstrd 3234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((𝑀 + 1)...𝑛) ⊆ (𝐾...𝑁))
8281sselda 3224 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑛)) → 𝑥 ∈ (𝐾...𝑁))
8370adantlr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
8482, 83syldan 282 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑛)) → (𝐹𝑥) ∈ 𝑆)
8572adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8649, 84, 85, 55, 56seqclg 10689 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆)
87 fveq2 5626 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
8887eleq1d 2298 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
8970ralrimiva 2603 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆)
9089adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆)
91 simpr 110 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))
92 ssel2 3219 . . . . . . . . . . 11 ((((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ (𝐾...𝑁))
9379, 91, 92syl2an 289 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝐾...𝑁))
9488, 90, 93rspcdva 2912 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
95 seqsplit.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9695caovassg 6163 . . . . . . . . 9 ((𝜑 ∧ ((seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆 ∧ (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
9762, 74, 86, 94, 96syl13anc 1273 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
9861, 97eqtr4d 2265 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))
9958, 98eqeq12d 2244 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) ↔ ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1)))))
10048, 99imbitrrid 156 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))
10147, 100animpimp2impd 559 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))))
10210, 17, 24, 31, 43, 101uzind4 9779 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))
1031, 102mpcom 36 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))
1043, 103mpd 13 1 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wss 3197  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by:  seqf1oglem2  10737
  Copyright terms: Public domain W3C validator